
Ultramicroscopy 179 (2017) 1–14 

Contents lists available at ScienceDirect 

Ultramicroscopy 

journal homepage: www.elsevier.com/locate/ultramic 

Super-resolved 3-D imaging of live cells’ organelles from bright-field 

photon transmission micrographs 

Renata Rychtáriková a , ∗, Tomáš Náhlík a , Kevin Shi b , Daria Malakhova a , Petr Macháček a , 
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a b s t r a c t 

Current biological and medical research is aimed at obtaining a detailed spatiotemporal map of a live 

cell’s interior to describe and predict cell’s physiological state. We present here an algorithm for com- 

plete 3-D modelling of cellular structures from a z-stack of images obtained using label-free wide-field 

bright-field light-transmitted microscopy. The method visualizes 3-D objects with a volume equivalent to 

the area of a camera pixel multiplied by the z-height. The computation is based on finding pixels of un- 

changed intensities between two consecutive images of an object spread function. These pixels represent 

strongly light-diffracting, light-absorbing, or light-emitting objects. To accomplish this, variables derived 

from Rényi entropy are used to suppress camera noise. Using this algorithm, the detection limit of ob- 

jects is only limited by the technical specifications of the microscope setup–we achieve the detection of 

objects of the size of one camera pixel. This method allows us to obtain 3-D reconstructions of cells from 

bright-field microscopy images that are comparable in quality to those from electron microscopy images. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Bright-field microscopy is a classical method, favored for its 

convenience and ability to observe the physiology and morphol- 

ogy of unlabelled living cells and tissues. It avoids potentially com- 

plicated sample preparation procedures and visual artifacts due to 

complex optical paths and, in addition, is non-destructive. How- 

ever, the main issue that hinders the segmentation and analysis of 

bright-field microscopy images [1–8] is the low contrast of struc- 

tures in the focal plane caused by distortions from an object spread 

function (OSF), which is unknown for most objects. These distor- 

tions are particularly relevant in a biological context, as biologi- 

cal specimens are significantly thicker than the depth-of-field of 

typical bright-field microscope lenses [9] and also have particu- 

lar physicochemical properties that lead to optical inhomogeneities 

and further complicate the OSF. Its analysis is in addition com- 

plicated by the dynamic nature of living cells, which causes spa- 

tiotemporal changes in the image. Finally, the discretization per- 

formed during image capture may also produce inaccuracies. The 

resulting standard bright-field microscopy image represents multi- 

ple processes and exhibits a multifractal character. 
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These issues impose several constraints on the type of algo- 

rithm and microscope appropriate for this task: 

1. It is necessary to obtain the most real and natural images 

possible in order to discover the spectral properties of a 

cell’s spread function. This can be carried out using a high- 

resolution camera equipped with an image sensor overlaid 

with a Bayer filter, capturing RAW files in a higher-bit colour 

depth and processing them using an non-interpolating algo- 

rithm [10,11] . Precise microscope mechanics should ensure 

the smallest possible movement along the z-axis. 

2. The analytical method must be able to recognize sponta- 

neous and random processes that underlie self-organization 

and multifractality [12] . Extracting the information from an 

image using Rényi entropy [13] parametrized by α ( α ≥ 0 

and α � = 1) serves as an appropriate basis for this task. 

3. The method must be sensitive to diffraction, which is the 

main interactive process between light and cellular struc- 

tures. Properties of the light wavefront that arises from 

diffraction and is projected at the objective lenses are de- 

scribed in full by Mie scattering theory [14] . Under the con- 

dition that the size of a particle is much larger than the 

wavelength of light, ray tracing techniques (geometry op- 

tics) provide a sufficient model for the characterization of 

the shape of the particle. Then, the behaviour of light at the 
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Table 1 

Microscope setup. 

Cell Series Camera Piezo a 

Number of img. b Step (nm) Time (min:s) Offset Gain Exposure (ms) 

MG63- a 93 (155) 119 03:35.4 0 268 3327 Yes 

MG63- b 128 (201) 150 10:22.7 266 347 2466 No 

L929 173 (358) 158 11:09.0 221 336 2632 No 

a If yes, the image series underwent image alignment (registration). 
b The original number of image in the series before z-step selection is parenthesized. 

interface of the strong diffracting object can be described 

by the phenomenon of total external light reflection and 

diffraction ( Supplementary Fig. 1b ). 

4. The method must recognize the focus of the cell in its 

spread function. According to the Extended Nijboer-Zernike 

(ENZ) theory [15–17] , the focus of a fluorescent and light- 

diffracting object is located at the position of the highest 

and lowest energy density, respectively ( Supplementary Fig. 

1a ). 

Here, we demonstrate a novel mathematical approach to reach 

superresolution in bright-field microscopy. This method, validated 

using atomic force microscopy, was applied to 3-D reconstructions 

and spectral and dynamic analysis of organelles and OSFs from z- 

stacks of bright-field microscopy images of live mammalian cells. 

2. Results 

The method is demonstrated on two cells of MG-63 human os- 

teosarcoma (labelled a and b ) from different cultivation batches 

and a cell of L929 mouse adipose tissue; the z-stacks of 12-bit 

bright-field microscopic RAW files were collected with an average 

z-step of 119, 150, and 158 nm, respectively. The detailed scanning 

conditions are described in Table 1 . The z-stacks underwent im- 

age pre-processing such as vertical image registration (the MG63- a 

cell) and the removal of defective (dead and hot) camera pixels 

(the MG63- b and L929 cells) to avoid image defects, which, in ad- 

dition, demonstrates the robustness of the method. 

The overall preview of the image processing of the z-stack 

of the input data—12-bit RAW files with a cell of interest and 

background—with respect to the items mentioned above is shown 

in Fig. 1 a and discussed in detail in the following sections. 

2.1. Segmentation of a cell’s focal region 

In the first step, a cell of interest was segmented from its back- 

ground by identifying green pixels whose intensities remain un- 

changed for each two consecutive RAW files ( Algorithm 1 , Fig. 1 b). 

The intensities of the green pixels in each Bayer mask quadruplet 

were averaged to give quarter-resolved grayscale images [10,11] , 

which were then subtracted. The unchanged intensities (i.e. zero 

values in the differential image) concurrently higher than 0 and 

lower than a 0.95-fold intensity mode of the cell-free second im- 

age contributed to the cumulative binary mask. In the focal region, 

these unchanged dark green pixels are the primary contributors to 

the cumulative binary mask ( Supplementary video 1 ). 

This binary mask was further processed by standard mor- 

phological operations—dilating the image (a 3 pixels disk-shaped 

structuring element), filling image holes (corresponding, in the 

original image, to the fluorescent objects and positive light inter- 

ferences in the Airy diffraction pattern [18] ), and filtering the cell 

of interest according to its specific features (in our case, as an ob- 

ject of the maximal size)—resulting in a final binary mask. The fi- 

nal binary mask of the cell was rescaled by a factor of two and 

applied to the whole z-stack of the original RAW files in order to 

distinguish a sum of point spread functions of the cell. 

Computation of the binary mask from RAW files’ red and blue 

pixels did not give the desired results. Due to the high frequency 

of consecutive pixels with constant intensities, the image of the 

cell merged with its background. The reason for this may be found 

either in light absorption in the infra-red and ultra-violet regions 

[19] or in lower photon quantum efficiency of the respective cam- 

era filters [20] . Therefore, in all segmentations, the green intensity 

wide range histogram was used. 

The next step consists of selecting the focal sub-stack of the cell 

and assessing cell topography. The focal region of the z-stack was 

determined via clustering point information gain entropy density 

( �α) spectra [21] obtained for all RAW files of the separated cell. 

The variable �α [bit] was derived from the Rényi entropy as 

�α,l = 

1 

1 − α

k ∑ 

j=1 
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∑ k 
j=1 p 

α
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∑ k 
j=1 p 

α
j,l 

, (1) 

where p j and p j, i are the probabilities of occurrence of intensity 

j in an intensity histogram of the l th image in the z-stack with 

and without an element of the intensity i , respectively. The addi- 

tive term 
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is called a point information gain ( �α,j , 

bit) and can determine an information contribution of intensity j 

to the intensity histogram obtained from either the whole image 

(a global measure �α,Wh ) or its part (local measures). For image 

processing of the presented cells, we used local values evaluated 

from pixels either on the vertical-horizontal cross ( �α,Cr ) or on a 

9 pixels circle around the examined pixel ( �α,Circle ). The kind of lo- 

cal information was chosen according to the distribution of inten- 

sities in the image. Whereas the z-stacks of the MG63- a and L929 

cells suffered from cross camera noise, the images of the MG63- 

b cell did not ( Supplementary videos 2 and 3 ). In the latter case, 

the 9 pixels circular type of surroundings approximately traced the 

borders of intracellular structures. 

For the overall multifractal characterization of the images, �α- 

spectra were calculated for a set of α = { 0.1, 0.3, 0.5, 0.7, 0.99, 1.3, 

1.5, 1.7, 2.0, 2.5, 3.0, 3.5, 4.0}, for each colour channel separately. 

While the values �α,j , and consequently �α,j , for the red and blue 

channels (indexed R and B , respectively) were computed by elim- 

inating one element of intensity j from the respective intensity 

histogram, these values for the green pixels (indexed G ) were ob- 

tained via eliminating two elements that were relevant to the in- 

tensities of the Bayer mask quadruplet. 

Matrices composed of vectors that specify each image l in the 

z-stack via α-dependent subvectors of the respective information 

context in the respective colour channel, i.e. 

�(l) = [�α,W h,R , �α,W h,G , �α,W h,B , �α,Cr,R , �α,Cr,G , �α,Cr,B ] (2) 

for series of the MG63- a and L929 cells and 

�(l) = [�α,W h,R , �α,W h,G , �α,W h,B , �α,Cr,R , �α,Cr,G , �α,Cr,B , 

�α,Circle,R , �α,Circle,G , �α,Circle,B ] (3) 

for the series of the MG63- b cell, were standardized with z-scores 

and underwent k-means clustering (squared Euclidean distance 

metric, 50 iterations) into two groups ( Algorithm 2 ). Due to the 
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