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a b s t r a c t 

Differential phase contrast microscopy measures minute deflections of the electron probe due to elec- 

tric and/or magnetic fields, using a position sensitive device. Although recently, pixelated detectors have 

become available which also serve as a position sensitive device, the most frequently used detector is a 

four-segmented annular semiconducting detector ring (or variations thereof), where the difference signals 

of opposing detector elements represent the components of the deflection vector. This deflection vector 

can be used directly to quantitatively determine the deflecting field, provided the specimen’s thickness 

is known. While there exist many measurements of both electric and magnetic fields, even at an atomic 

level, until now the question of the smallest clearly resolvable field value for this detector has not yet 

been answered. This paper treats the problem theoretically first, leading to a calibration factor κ which 

depends solely on simple, experimentally accessible parameters and relates the deflecting field to the 

measured deflection vector. In a second step, the calibration factor for our combination of microscope 

and detector is determined experimentally for various combinations of camera length, condenser aperture 

and spot size to determine the optimum setup. From this optimized condition we determine the mini- 

mum change in field which leads to a clearly measurable signal change for both HMSTEM and LMSTEM 

operation. A strategy is described which allows the experimenter to choose the setup giving the highest 

field sensitivity. Quantification problems due to scattering processes in the specimen are addressed and 

ways are shown to choose a setup which is less sensitive to these artefacts. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

The foundation for modern differential phase contrast mi- 

croscopy was laid in the early 70s of the last century by Rose 

[1] who described the possibility of phase contrast imaging in a 

STEM using a concentrically arranged array of annular detectors. 

Dekkers and de Lang [2] were the first who suggested to use a split 

detector to measure the modulated phase of an electron beam. The 

first experimental realization of DPC in a STEM was carried out 

by Chapman in 1978 [3] , using a circular split detector to measure 

the movement of the STEM diffraction disk, caused by the Lorentz 

deflection of the electron beam when it passes through a speci- 

men with a magnetic domain wall structure. With the shifts of 

the diffraction disk being directly proportional to the product of 

the strength of the local magnetic induction and specimen thick- 

ness he was able to directly image the field distribution within the 

specimen. Continuous improvement of the technique showed that 

it is not only possible to image magnetic [4–7] but also electric 
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field distributions [8–10] with down to atomic scale spatial resolu- 

tion [11–13] . The most common detector layout used for DPC mea- 

surements is the segmented annular ring detector introduced by 

Chapman in 1990 [14] . Recently, pixelated detectors like a fast CCD 

or MOSFET based TEM camera have been used more frequently 

[15–21] . This paper, however, will exclusively deal with the prop- 

erties of an annular four quadrant detector as it is an established 

and nowadays commercially available part of modern STEMs. With 

this detector geometry it is possible to combine the signals of in- 

dividual segments as needed, e.g. by taking the sum of all signals 

one obtains, depending on the radius r of the central hole, an (an- 

nular) bright field STEM (smaller r ) or an annular dark field image 

(larger r ). Even a split segment configuration [2] can easily be ac- 

complished. 

Although DPC has recently been gaining more attention as a 

tool to image microscopic electric and magnetic field distributions 

with a STEM, there are comparably few papers which focus on the 

question which parameters influence the measured signal, primar- 

ily from the point of view of the detector geometry and the mi- 

croscope’s settings [3,22–24] , rather than considering the electron- 

specimen interaction. Hence, this work will deal with the identi- 
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Fig. 1 . Annular DPC detector (inner (hole) radius r ) centricaly illuminated with the 

electron diffraction disk (radius R ). The hatched area A I represents the overlap of 

the beam with one segment. The individual segments are named after the numerals 

on a clock face. 

fication and characterization of measurement parameters influenc- 

ing the sensitivity of DPC imaging for our specific DPC setup. In the 

next chapter we will present theoretical considerations on the sig- 

nal formation to derive formulae which identify and describe the 

influence of these parameters and further allow the calibration of 

any other real setup. Some of these considerations are based on 

former theoretical work performed by Zweck [23] who estimated 

the achievable sensitivity of annular four quadrant DPC detectors 

regarding small shifts of the diffraction disk. Next we will present 

the results of an experimental calibration of our DPC setup relat- 

ing the measurement signals acquired in arbitrary analog-to-digital 

converter units to absolute values of the deflecting field strength 

and deflection angle via setup dependent conversion factors. This 

has been done for all reasonable combinations of microscope set- 

tings affecting the responsivity of the detector. In this context one 

of our main interests was to evaluate the achievable sensitivity 

for beam deflections in standard high magnification STEM and low 

magnification STEM modes. We will conclude this work with an 

evaluation of the influence of camera length, diffraction disk ra- 

dius and detector geometry on the calibration. All of the experi- 

ments were performed on a FEI Tecnai F30 instrument equipped 

with two concentric annular DPC detectors. 

2. Theory on signal formation 

2.1. Relation between deflection angle and DPC signal 

The signal S seg obtained from one detector segment, being 

partly illuminated by a homogeneously filled diffraction disk, (see 

Fig. 1 ) can be written as 

S seg [ SU ] = A I [ m 

2 ] · j 

[ 
A 

m 

2 

] 
· γ

[ 
SU 

A 

] 
(1) 

with A I being the illuminated area on the detector, j the beam cur- 

rent density and γ a constant, system dependent factor describ- 

ing the conversion of the incident electron current to digital signal 

units (SU) obtained from the read out electronics of the DPC setup. 

It contains the detection quantum efficiency of the detector as well 

as influences of the signal amplification and AD conversion. The 

segments of the detector are named after the numerals on a clock 

face. Starting with a centred diffraction disk, illuminating areas of 

identical size on each segment, as shown in Fig. 1 , we get a base 

signal S 0 defined as 

S 0 := S 3 0 = S 6 0 = S 9 0 = S 12 
0 

= j · γ · A = j · γ · 1 

4 

(
R 

2 π − r 2 π
)

(2) 

Fig. 2. Schematic to describe the change of the illuminated area (dashed area) of a 

single segment when the diffra ction disk gets shifted further onto the detector by a 

distance �x . The change of the arc length while shifting the disk can be neglected 

( b s ≈ b c ) because �x is small compared to the disk radius R . 

R and r are the radii of the diffraction disk and the detector hole 

as marked in Fig. 1 . In Fig. 2 the diffraction disk is shifted by a 

distance �x towards segment 12 leading to an increase of the illu- 

minated area A I (hatched area) by 

�A I ≈ 1 

4 

· 2 πR ︸ ︷︷ ︸ 
arc length 

·�x (3) 

In this equation we used that the arc length of the centred disk 

b c is in good approximation equal to the arc length of the shifted 

disk b s , leading to the linear increase of A I with �x . This approx- 

imation can safely be made because usually the convergence an- 

gle α is large (mrad range) compared to the deflection angle β
(μrad range) and hence R is large (millimetre range) compared to 

the typical shifts of the diffraction disk on the detector (microme- 

tre range). Zweck et al. [23] demonstrated the linear dependence 

between signal and small ( �x � 0.6 R ) beam displacements. Based 

on this we can derive the signal δS contributed by the additional 

illuminated detector area �A I as 

δS = j · γ · �A I = j · γ · 1 

2 

· �x · π · R (4) 

The total signal of a segment when the disk is shifted either on 

(summation in Eq. (5) ) or off (subtraction in Eq. (5) ) can thus be 

described as 

S seg 

total 
= j · γ · 1 

4 

(R 

2 π − r 2 π) ︸ ︷︷ ︸ 
S 0 

± j · γ · 1 

2 

· �x · π · R ︸ ︷︷ ︸ 
δS 

(5) 

When we consider two opposing segments, the signal of the one 

where the beam is shifted onto it obviously increases ( S 0 + δS) by 

the same amount as the signal of the other one decreases ( S 0 − δS). 

With this in mind the signal difference S dif is 

S dif (�x ) = S 0 ± δS − (S 0 ∓ δS) 

= 2 δS 

= π · R · j · γ · �x ( 6) 

Hence, the base signal S 0 has no direct influence on the result 

of DPC measurements as only the signal δS caused by a shift 

�x of the diffraction disk contributes to difference signal S dif . 

Eq. (6) shows that S dif has a linear dependence on the diffrac- 

tion disk shift. This is a direct implication of the approximation 

made above (see Eq. (3) ) and calculations done by Zweck et al. 

[23] further justify the detector linearity in standard DPC imaging 

for small deflections �x . 

Based on these considerations we can define two orthogonal 

vectors describing the signal difference for each detector axis 

�
 S 3 −9 
dif 

= π · R · j · γ · �x · ˆ e x 

�
 S 12 −6 
dif 

= π · R · j · γ · �y · ˆ e y 
(7) 

where �x and �y describe the disk’s shift along the directions 

connecting sectors (3 — 9) or (12 — 6), respectively. By adding up 
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