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A selection of tensor decomposition techniques is presented for the detection of weak signals in electron energy
loss spectroscopy (EELS) data. The focus of the analysis lies on the correct representation of the simulated
spatial structure. An analysis scheme for EEL spectra combining two-dimensional and n-way decomposition
methods is proposed. In particular, the performance of robust principal component analysis (ROBPCA), Tucker
Decompositions using orthogonality constraints (Multilinear Singular Value Decomposition (MLSVD)) and

Tucker decomposition without imposed constraints, canonical polyadic decomposition (CPD) and block term
decompositions (BTD) on synthetic as well as experimental data is examined.

1. Introduction

Electron Energy Loss Spectroscopy (EELS) is a method which
found its way into the standard repertoire of electron microscopy
techniques due to its capability to analyze samples simultaneously
structurally and chemically on length scales only limited by the
microscope's resolution. In principle, this puts the possible resolution
of EELS well into the subnanometric regime for modern instruments
[1,2]. However, if taken to the extreme of atomic resolution, EEL
spectra often suffer from a low signal to noise (S/N) ratio which may
render the correct mapping of weak signals, e.g., subtle changes in the
fine-structure of an elemental edge due to different chemical environ-
ments, difficult.

There are several parameters determining the possible S/N ratio of
EEL spectra. For example, an increased beam brightness, dwell time on
the respective pixel or increased collection angle all lead to an
enhanced S/N ratio. When considering a given setup, the signal to
noise ratio of EEL spectra is limited by the stability of the sample with
respect to beam damage. This puts a hard limit on the achievable S/N
ratio and thereby on the capability to analyze the sample.

Complementary to instrumental efforts to improve the data quality,
a statistical data treatment may lead to an improved understanding of
the underlying physical information, either by removing the noise
(denoising) or by identifying physically meaningful underlying source
components of which the measured signal is composed (blind source
separation). As the stability of microscopes is steadily increasing, it can
be expected that the sizes of EELS data tensors will become increas-
ingly large clearing the ground for a powerful statistical analysis.
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Among the most common data processing methods is principal
component analysis (PCA) which has been introduced for the analysis
of EEL spectra and microscopic image analysis in [3] and has since
been used for denoising (e.g., [4]) and physical analysis or EEL spectra,
either by direct interpretation of the principal components (e.g., [5]) or
by posterior physically motivated rotation of the principal components
[6]. As is already commonly known and we demonstrate below, PCA
performs poorly in the presence of outliers (e.g., [7,8]). We suggest to
apply robust principal component analysis (ROBPCA) as suitable
denoising method being robust against outliers and otherwise grossly
corrupted spectra in the data set. Among the multitude of available
ROBPCA algorithms (for a review see [9]) we focus our analysis on the
algorithm of Hubert et al. [10].

Lichtert et al. [11] pointed out that PCA may lead to artifacts in the
localization of the denoised physical components if the dimension of
the data is not chosen with care. Although we did not observe such
types of artifacts in practice, it highlights the necessity of obtaining a
clear, correct localization of the source components. A possible road to
cleaner coefficient maps lies in the application of tensor decomposi-
tions. When going from two-dimensional decomposition methods to a
three-dimensional analysis, also the spatial correlations of the EELS
data tensors can be considered for an optimal denoising. Especially in
the case of atomic resolution EELS data, the data tensor can be often
embedded in a much lower dimensional space along the spatial modes.
These modes often have a low rank and can be well represented by only
few components.

This idea can be grasped by considering a hypothetical EELS or
EDX data tensor with a scan area of 50x50 pixels and 2000 energy
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channels. Typically, this tensor would be matricized to a 2500x2000
matrix so that PCA (or any other 2D extraction method) finds the
spectral signatures of the source components. However, one can
equivalently matricize the tensor to a 100,000x50 matrix. A 2D
decomposition method now yields the spatial signatures of the source
positions. Loosely speaking, tensor decompositions perform both
decompositions simultaneously, so that information about source
components as well as positions can be used for the denoising or
analysis of the data tensor.

For a more complete overview of available tensor decomposition
techniques than those included in the current paper and details on
different algorithms, we refer the reader to [12—14] and references
therein. Here, the discussion will be focused on Tucker decompositions
[15] using either no constraints or orthogonality constraints on all
modes, a technique also known as multilinear singular value decom-
position (MLSVD, or higher order singular value decomposition
HOSVD) [16], canonical polyadic decomposition (CPD, also parallel
factor analysis PARAFAC) [17] and Block term decomposition (BTD)
[18]. Strengths and shortcomings of these methods when attempting to
map a weak component in noisy synthetic data are discussed.

Throughout the article we use small case symbols to indicate scalar
and vectorial quantities, bold upper case symbols to indicate matrices
and calligraphic upper case symbols to denote tensorial quantities.
Following the terminology of the tensor decomposition field of
research, the two spatial and single energy dimension of the tensor
will be referred to as spatial and energy mode, respectively, because the
term dimension is used to describe the number of modes of the tensor
or also the tensor's rank along a specific mode.

2. Creation of synthetic EEL spectra

The model for the synthetic data can be described as
X = Background + Edges + Noise + Spikes

The background was modeled by a single power law B = a-E™. The
parameter b was gradually changing over the spatial structure of the
data set, what resembles the behavior of the background variation in
real EELS data, a was kept constant at all times.

The edge signal was composed of three components modeled by two
Gaussian peaks with a double step function (two hyperbolic tangens)
underneath. The third component was chosen to be an additional fine-
structure which was added on top of the second component's edge. By
construction the components are not orthogonal to each other, what
resembles experimental data sets. In particular, the correlation coeffi-
cient of a fine-structure like components (comp. 3) to its edge structure
(comp. 2) is 0.26 clearly indicating the non-orthogonality of the two
components. These two components may resemble differences of the
same elemental species in different chemical environments found in
EELS data.

Lastly, noise and outlying spikes were modeled using a Poisson
distribution and the Matlab 2014b salt & pepper noise from which the
additive Gaussian noise was subtracted.

The spatial structure of the three source components, which was
chosen to be non-negative and strongly overlapping, as well as their
spectral signatures are displayed in Fig. 1. The model mimics an atomic
resolution data set, where the maps of the three components are
strongly overlapping. Of particular interest is the single atom of the
third component which is the sample's weakest feature. Its correct
retrieval may be taken as indicator for the performance of the analysis
method. The size of the synthetic data tensor was 100 x 100 x 1000
leading to a lattice spacing of 10 pixels, what is comparable to
commonly achieved magnifications in atomic resolution EELS experi-
ments. In total, three data tensors with identical source components
were created.
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Fig. 1. Top left: Spatial structures of source components 1, the structure of component 2
corresponds to that of component 1, where positions of minima and maxima have been
swapped. Bottom left: Spatial structures of source component 3. The scale bar in both
aforementioned images ranges from 0.5 (black) to 1 (white). Top right: Spectral
signatures of the three source components. Bottom right: Example for a synthetic
spectrum. Superposed is the noise-free spectrum where the two simulated edge regions
can be identified.

3. Procedure for data compression

When faced with the problem of analyzing atomic resolution EELS
data the first necessary step is to denoise the data before subjecting
them to any further analysis. This goal can be achieved either by local
filtering (such as median or gaussian filters) or by decomposing the
data and reconstructing them using only a limited number of compo-
nents - by reducing the dimension of the data. Since local filters often
blur the spatial structure or the spectral signatures, it is desirable to
achieve the denoising using the latter approach. In a typical experi-
ment, several data tensors are measured. Not all of them may contain
an interesting structure, while still being describable by the same
source components as the physically interesting data tensor. For a
better denoising result, it is therefore advisable to treat all data tensors
simultaneously for the identification of the physically relevant signal
subspace. Since the spatial structures may vary strongly between
different data tensors and the size of their modes may not match, this
simultaneous treatment can often not be done using tensor decom-
positions. We propose to perform the simultaneous denoising of the
energy mode instead using 2D decomposition methods such as (ROB)
PCA. In a second denoising step, tensor decompositions can be applied
to the data tensor of interest to further denoise the spatial structure of
the data tensor.

Since both techniques are robust against stochastic noise, lead to a
unique solution and allow for an easy identification of the signal
subspace, we suggest ROBPCA and MLSVD for the denoising of EELS
(or EDX) data tensors due to their favorable properties discussed
below.

3.1. Robust principal component analysis

For this first step of the analysis, the spatial modes of the three
synthetic data tensors were unfolded, matricized. Since spatial struc-
tures are not considered in ROBPCA, it does not matter that they are
identical in that regard. The inclusion of sharp spikes creates a number
of strongly outlying data points which will disturb a classical PCA
decomposition. Like classical PCA, ROBPCA of the joint data matrix X
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