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A B S T R A C T

We report on a novel non-iterative phase retrieval method with which the complex-valued transmission
function of an object can be retrieved with a non-iterative computation, with a limited number of intensity
measurements. The measurements are taken in either real space or Fourier space, and for each measurement
the phase in its dual space is modulated according to a single optical parameter. The requirement found for the
phase modulation function is a general one, which therefore allows for plenty of customization in this method. It
is shown that quantitative Zernike phase contrast imaging is one special case of this general method. With
simulations we investigate the sampling requirements for a microscopy setup and for a Coherent Diffraction
Imaging (CDI) setup.

1. Introduction

There are many applications where one wants to find a complex-
valued function f(x), but only its modulus f x| ( ) | can be measured
directly. In the context of Coherent Diffraction Imaging (CDI) this
function may represent the transmission function of a sample, but
there are many other applications for phase retrieval as well (e.g.
quantum state tomography [1–4]). To find the function f(x) itself, one
must therefore find a method to retrieve the phase.

In particular, there are phase retrieval problems that involve either
measurements or some kind of constraints on a Fourier transform pair,
given by f(x) and its transform f x f x( ′) = { }( ′)∼

. An example of such a
case is found in CDI. In this case we have a two-dimensional object,
with a complex-valued transmission function O x( ). Here, x is a 2D
position vector. If we illuminate the object with a plane wave we can
measure the intensity of the diffraction pattern in the far field
I Ox x( ′) = | ( ′) |∼ 2, where O∼ denotes the Fourier transform of O, and x′
is a 2D vector in Fourier space. Suppose, as in the original proposal by
Gerchberg and Saxton [5], that we can only measure the intensity I x( ′)
directly, and of the function O x( ) we only know its support (i.e. our
object is an isolated object, of which we know its finite size). In other
words, we have an amplitude constraint in Fourier space, and a support
constraint in the object space. With projective algorithms such as the
Error Reduction algorithm [5] or the Hybrid Input–Output algorithm
[6], we alternatively apply the amplitude constraint and the support
constraint in the two dual spaces, and that way we can try to

reconstruct O x( ) and O x( ′)∼
. However, these algorithms are known to

not always converge to the correct solution. An alternative approach is
ptychography, for which algorithms have been developed such as the
ptychographic iterative engine (PIE) [7]. In ptychography, an illumina-
tion function P x( ) is used to illuminate different parts of an objectO x( ).
That is, we shift the illumination function by some vector Xj, and for
each Xj we measure intensity I O Px x x X x( ′) = | { ( ) ( − )}( ′)|j j

2. By
having P x X( − )j overlap for different Xj, there is redundancy in the
intensity measurements I x( ′)j , which is used as an extra constraint in
the reconstruction, which makes the algorithm more robust. The PIE
algorithm has been extended to ePIE [8], and it has been applied to
quantum tomography [4]. However, the algorithm is still a black box in
the sense that there are no known guarantees for convergence to the
correct solution.

The algorithms mentioned so far are all iterative methods. There
are also non-iterative methods to retrieve the phase from Fourier pairs.
An example of such a method is Zernike phase contrast microscopy [9].
If we have a 2D phase object O ex( ) = iφ x( ), we can Fourier transform it,
shift the phase of the 0th diffraction order by π /2, and apply an inverse
Fourier transform. We then find that the phase information has been
converted to amplitude information which can be measured directly.
However, the assumption has to be made that the object is a pure phase
object, and that the variation of the phase is small (i.e. the weak-phase
approximation should hold). A method in which these assumptions do
not have to be made is quantitative Zernike phase contrast imaging
[10]. In this method, we have an arbitrary 2D complex-valued object
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O x( ), and we shift the phase of the 0th diffraction order of its Fourier
transform O x( ′)∼

by A π∈ [0, 2 )j . We then apply an inverse Fourier
transform, and measure the intensity I x( )j . By taking three different
measurements for different Aj, the object O x( ) can be calculated
directly. However, this approach would make it desirable that O 0| ( ) |∼

is sufficiently large, because otherwise the variations in I x( )j are too
small, which makes the method very sensitive to noise.

A non-iterative phase retrieval method that in a way resembles
quantitative Zernike phase contrast imaging is Fourier transform
holography [11]. Whereas in the quantitative Zernike phase contrast
method a perturbation (i.e. a phase-shifted pixel) is introduced inside
the support of the field, in Fourier transform holography a perturbation
(i.e. a point source that is coherent with the incident field) is introduced
sufficiently far away from the support of the field. This way the
autocorrelation of the field (which can be found by inverse Fourier
transforming the intensity of the Fourier transform of the field)
contains information that is proportional to the original field. The
main advantage of this method is that only one intensity measurement
is needed. Similar methods that use holography-related techniques
with an extended reference are given in [12,13].

Another non-iterative method is the focus-variation method
[14,15], for which substantial progress was made during the 1996
Brite–Euram project [16–20]. In this method, we have a 2D object
O x( ), and we take intensity measurements in different defocus planes
I O ex x x( ′) = | { ( ) }( ′) |j

iA x| | 2j 2
. With these intensity measurements we can

directly calculate O x( ), but only in the approximation that O 0| ( ) |∼
is

sufficiently large. If the distance between two measurement planes is
sufficiently small, the Transport of Intensity Equation can be used to
solve the field non-iteratively [21,22]. In this method, the difference
between the intensities measured in the two planes is described with a
differential equation, from which the field can be solved. A related
method which uses shifting Gaussian filters is presented in [23].

A method similar to the focus-variation method is the 2D astigma-
tism variation method [24]. Instead of varying the defocus parameter
to get different intensity measurements, two second-order astigmatism
parameters are being varied. With this method, the object O x( ) can be
calculated non-iteratively, and no approximation needs to be made
about the magnitude of O 0| ( ) |∼

.
An overview of various non-iterative phase retrieval methods is

given in [25].
In this paper, we present another non-iterative phase retrieval

method based on parameter variation. Just like in the case of focus
variation and 2D astigmatism variation, we modulate the phase in one
space (real space or Fourier space) according to a parameter Aj, and we
measure intensities Ij in the dual space. However, as opposed to focus
variation, our method does not require the approximation of O 0| ( ) |∼

being large, and as opposed to 2D astigmatism variation, we only need
to vary one parameter. Our method gives a general form of the phase
modulation function we need to apply, and we will demonstrate that in
a special case this method reduces to quantitative Zernike phase
contrast. Thus, in a way our general method provides a framework
which connects focus variation and astigmatism variation with quanti-
tative Zernike phase contrast, while providing an entire class of
alternatives as well.

2. Method

The novel non-iterative phase retrieval method that we explain in
this section can be applied in a microscopy setup (see Fig. 1a), or in a
focused probe or CDI setup (see Fig. 1b). Let us for the sake of notation
decide that we are treating the case for the CDI setup, but the same
derivation holds for the microscopy setup if we interchange the roles of
object space and Fourier space (if we assume there are no incoherent
effects). It should be noted though that from a practical point of view
the microscopy setup would be easier to implement than the CDI setup:

in the microscopy setup one could with a Spatial Light Modulator
(SLM) directly alter the phase of the field in the Fourier plane, while in
the CDI setup it may not be so straightforward to shape the phase of the
probe.
O x( ) can be reconstructed non-iteratively from intensity measurements
as follows:

1. We have a complex-valued transmission function O x( ) of an object.
We illuminate it with an illumination function P ex( ) =A

πiAf x2 ( ).
2. For N different A, spaced by some interval ΔA, we measure the

intensity in the diffraction plane I O Px x( ′) = | { · }( ′) |A A
2.

3. We reconstruct the object in x 0≠ using

∑O O I H A e0 x x*( ) ( ) = { }( ) ( ) ,
A

A
πiAf x−1 −2 ( )

(1)

where H(A) is a sampling function which we can choose to be e.g.
Gaussian multiplied with a series of delta peaks that determine for
which A we sample.
4. To reconstruct the object in x 0= , we need to find O 0| ( ) |2. This is

done by solving a quadratic equation.

In the following paragraphs we will demonstrate that this method
works if f x( ) is chosen appropriately.

First, we will rewrite Eq. (1) so that it becomes more apparent why
we can reconstruct O x( ) with this expression. Note that if H(A) consists
of multiple delta functions which indicate for which A we sample I x( ′)A ,
we can rewrite the right side of Eq. (1) as an integral over A

∫∑ I H A e I H A e Ax x{ }( ) ( ) ∝ { }( ) ( ) d .
A

A
πiAf

A
πiAfx x−1 −2 ( ) −1 −2 ( )

(2)

We can rewrite I x{ }( )A
−1 as an autocorrelation function

∫I O O ex y x y y{ }( ) = ( )* ( + ) d .A
πiA f fx y y−1 2 ( ( + )− ( ))

(3)

Plugging this into Eq. (2) and defining H A( ′)͠ as the Fourier transform
of H(A) we get

∬
∫

∑ I H A e

O O e H A

O O H f f f

x

y x y y

y x y x y y x y

{ }( ) ( )

= ( )* ( + ) ( )d dA

= ( )* ( + ) ( ( + ) − ( ) − ( ))d .͠

A
A

πiAf

πiA f f f

x

x y y x

−1 −2 ( )

2 ( ( + )− ( )− ( ))

(4)

Let us for now assume the ideal case that H A( ) = 1 so that
H A δ A( ′) = ( ′)͠ , i.e. we assume that we can sample I x( ′)A for all A
continuously. In that case Eq. (4) reduces to

∫∑ I H A e O O δ f f

f

x y x y x y y

x y

{ }( ) ( ) = ( )* ( + ) ( ( + ) − ( )

− ( ))d .
A

A
πiAf x−1 −2 ( )

(5)

Let us have a closer look at the argument of the delta function, which
we define as

g f f fx y x y y x( , ) = ( + ) − ( ) − ( ). (6)

Note that if x 0= or y 0= , then g x y( , ) = 0 (where we have assumed
without loss of generality that f 0( ) = 0). For now we will assume that
x 0≠ . Suppose that g x y( , ) = 0 only if y 0= . In that case Eq. (5) will
reduce to

∑ I H A e O Ox 0 x{ }( ) ( ) ∝ ( )* ( ),
A

A
πiAf x−1 −2 ( )

(7)

which is what we want (the expressions are in this case proportional to
each other, not equal, because the determinant of the Jacobian is
omitted. However, in case that we pixelate I x( ′)A and O x( ), i.e. we
discretize x, as will always be the case in practice, this factor is
irrelevant). Although the preceding derivation was not very rigorous
in using delta functions, it can be made mathematically rigorous by
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