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a b s t r a c t

Using computer-generated models we discuss the use of fluctuation electron microscopy (FEM) to
identify the structure of amorphous silicon. We show that a combination of variable resolution FEM to
measure the correlation length, with correlograph analysis to obtain the structural motif, can pin down
structural correlations. We introduce the method of correlograph variance as a promising means of in-
dependently measuring the volume fraction of a paracrystalline composite. From comparisons with
published data, we affirm that only a composite material of paracrystalline and continuous random
network that is substantially paracrystalline could explain the existing experimental data, and point the
way to more precise measurements on amorphous semiconductors. The results are of general interest for
other classes of disordered materials.

& 2017 Elsevier B.V. All rights reserved.

1. Introduction

While FEM has been repeatedly confirmed as a powerful “fin-
gerprint” for medium-range order in amorphous materials, it re-
mains difficult to simply interpret the results. For example, if we
focus on the archetypal amorphous silicon, and the paracrystalline
[1] versus continuous random network (CRN) [2] models, several
questions have been difficult to separate. The paracrystalline
model assumes a conglomerate of small crystallites that are im-
perfect. In fact in the classic model where the amorphous material
is a compact of paracrystallites the degree of order decays as a
function of distance from any atom [1]. Real models of nanocrys-
tals have distortions that increase near the grain boundaries and
the decay length is approximately the same as the length scale of
the grain size. However, it is also possible that the real material is a
composite of paracrystals embedded in a random network. In that
case key parameters would be the grain-size or correlation length
and the volume fraction of paracrystalline material. Using the
“ansatz” model proposed by Gibson et al. [3], several authors have
had consistent results in measuring the correlation length from
the dependence of the normalized intensity variance on the probe
size (also known as “variable resolution microscopy”) e.g. Bogle
et al. [4]. There has been controversy about the volume fraction.
Some authors not using FEM have claimed that, while ordered
regions may be present, they are only in trace concentrations

(e.g. Wang et al. [5]). It has thus become important to develop the
FEM technique so that it can separately determine; 1) the struc-
ture of ordered regions; 2) the size or correlation length of the
order; and 3) the volume fraction of ordered regions. Based on a
variety of previous works, and some new ideas discussed here, we
feel confident that these should be independently measurable by
experiment. We support our claim in this paper through simula-
tions on a variety of models for amorphous silicon. We expand on
these three issues next

1) The “crystal structure”1 of ordered regions.
From the pioneering work of Kam [6] it is known that the

correlation function,
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recovers the single-particle correlation function, assuming a dis-
tribution of randomly-oriented ordered clusters. The “correlo-
graph”, introduced for electron microscopy by Gibson and Treacy
[7], based on ideas of Cheng et al. [8], is the azimuthal auto-
correlation function of C. We previously noted, in contrast to the
related x-ray approach of Wochner et al. [9], that the ensemble-
averaged C was essential to reveal single particle correlation
functions. Probing individual images before averaging in a corre-
lograph can be interesting, but coincidental and unreal
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1 We use quotes around “crystal structure” because there is no long-range order
constraint, and non-periodic packing symmetries, such as dodecahedral, are
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symmetries can be displayed due to particle overlap. These are
averaged out in the correlograph [7]. The correlograph is effective
for directly revealing the structure of the average unit, such as the
structure of paracrystals. We have shown, and elaborate here, that
the paracrystalline model, amongst those models currently pro-
posed, is the only model that comes close to fitting the experi-
mental correlograph.

The FEM normalized intensity variance plot can be used to
deduce the crystal structure through simulations, but this is in-
direct and places a premium on the construction of comprehen-
sive families of physically realistic structures. Experimentally-
constrained Monte Carlo approaches using FEM variance appear to
be effective, requiring very little a priori model building [10–12]. In
all cases the paracrystalline structure was found to be a good fit to
data and, in at least one case, it was the only acceptable fit [11]. In
one study [10], a CRN model that contained voids was found to fit
also (vide infra). In another study [12] a complication arose be-
cause the procedure for obtaining the normalized variance was
inconsistent between experiment and modeling (vide infra).
However, we will see that FEM data obtained with only one probe
size, without knowledge of scaling, is not sufficiently constraining.
The fluctuation map [3] (i.e., the 3-dimensional plot of normalized
variance against scattering vector and probe size) is far more
constraining, but has not yet been used to our knowledge in ex-
perimentally-constrained energy-minimization. Furthermore, the
correlograph contains much more information, about symmetry
for example, and should also be considered as an experimental
constraint for minimization.

2) The “crystal” size, or correlation, length
Given the existence of ordered regions, measurement of their

size or correlation length Λ is among the most reliable and widely
used experimental methods. Gibson et al. [3] proposed an “ansatz”
model for the measurement of the correlation length, the validity
of which has repeatedly been demonstrated experimentally and
by simulation e.g. [4,13]. The ansatz model approximates the si-
mulation of variance by assuming that the contributions arising
from probe size (beam convergence) and scattering vector are
decoupled – literally, a separation of variables where we declare
that V(rp, k) ≡ R(rp)K(k). This has been shown to be an excellent
approximation when the probe size is larger than the correlation
length, i.e. rp c Λ. In this paper we also demonstrate that an even
more direct measurement of the correlation length can be ob-
tained by identifying the probe size that yields the maximum
overall variance. This occurs at rp E Λ. For the case of static
amorphous silicon models, we find that experimentally observed
fluctuation maps are consistent only with a paracrystalline struc-
ture – neither the CRN nor the CRN with voids show the char-
acteristics of medium-range order. Nor do they show a peak and
decay in the variance versus probe size. Of course this does not
rule out the possibility of a composite paracrystalline and CRN-
type model, and that question is addressed next.

3) Volume fraction of ordered regions
This has proven to be the most difficult to measure reliably.

While theoretically there is a strong correlation between the
fraction of order and the magnitude of the variance peaks, there
are suspicions that “decoherence” effects strongly reduce these
experimental variance amplitudes in an as-yet unpredictable way
[14,15]. The structure details would also affect the variance peak
heights so that questions 1 and 3 are difficult to decouple. Several
approaches have been suggested. Bogle et al. [4] observed a cor-
relation between the relative heights of the first and second var-
iance peak, at least for Si, but this depends also on the probe size.
Yi et al. [16] proposed detailed fitting of peak heights and probe
size, based on a reasonably sophisticated dispersed crystal model
of a composite, but this appears vulnerable to details of the
structure (e.g. faulting and intergrowths).

An intriguing, and highly informative, metric to examine is the
correlograph. Gibson et al. [7] showed that the characteristics of
correlographs were affected significantly by volume fraction, and
used that sensitivity to estimate a paracrystalline volume fraction
of greater than 50% in a typical sputtered amorphous Si sample. On
the other hand, Raman data has been used to suggest a much
smaller volume fraction [5]. Cheng et al. [8] proposed diffraction
intensity cross-correlations (covariance) as a more informative
measure than the simple variance, which measures the intensity
autocorrelation. Li et al. [17] went further and proposed cross-
correlations as an approach to study volume fraction. Below we
suggest that the variance of the correlograph looks like a powerful
and independent method to determine volume fraction on the
assumption (which can be verified by conventional diffraction)
that there is a random orientation distribution of paracrystals.

From our modeling of amorphous silicon it seems clear that the
paracrystalline structure (possibly diluted with CRN) is the only
model that can explain FEM data, including correlographs, ex-
perimentally observed in amorphous silicon. This assertion is also
consistent with experimentally-constrained energy minimization
[11]. The 2-body function is not discriminating enough to distin-
guish these models, as has already been clearly demonstrated
[11,12]. However, detailed comparison with fresh experiments,
including measurements of the correlograph variance, is desired to
make more precise conclusions.

2. Theoretical and simulation background

Simulations were carried out including the curvature of the
Ewald sphere under the kinematical approximation. To deal with
small model sizes simulations were carried out at 20 kV accel-
erating voltage, which replicates the conditions of multiple scat-
tering at 100–200 kV in a typical thickness of 10–20 nm. For
comparison, full multi-slice calculations and weak-phase object
calculations were also made using the same Mathematica-based
software package written by the first author, JMG. In general we
saw reduced peak heights, but no major changes in thin samples
arising from multiple scattering, and little accelerating voltage
dependence apart from Friedel’s-law issues arising from the cur-
vature of the Ewald sphere. Models up to 20 nm in size were
simulated. In order to expand the size of smaller models, these
were rotated through 90° , shifted and assembled into a larger
cube, from which cubes of size 3 times the original model size
could be carved after random re-orientation. About 1000 image/
diffraction calculations were carried out for each model and for
each probe size.

Variance is calculated by the technique listed as number 4
(“Annular mean of variance image”) by Daulton et al. [18],
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where o 4ϕ is the average over the azimuthal angle, ϕ, and the
average, o 4 r, is over the ensemble (that is, over different probe
locations, r).

This method produces much higher variance overall than the
first method enumerated by Daulton (“Normalized variance of the
annular mean”), which evaluates the angular average of I( k )2

before averaging over the ensemble, and so method 4 is much
preferable to method 1. We should note here that method 1 was
initially used in hollow-cone dark-field in the earliest FEM work
because the angular averaging automatically occurred. The angular
averaging was originally seen as an advantage as it provided a way
to adjust the illumination spatial coherence, and the method was
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