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A B S T R A C T

In numerical calculations for electron diffraction often a simplified form of the electron-optical refractive index,
linear in the electric potential, is used. In recent years improved calculation schemes have been proposed,
aiming at higher accuracy by including higher-order terms of the electric potential. These schemes start from
the relativistically corrected Schrödinger equation, and use a second simplified form, now for the refractive
index squared, being linear in the electric potential. The second and higher-order corrections thus determined
have, however, a large error, compared to those derived from the relativistically correct refractive index. The
impact of the two simplifications on electron diffraction calculations is assessed through numerical comparison
of the refractive index at high-angle Coulomb scattering and of cross-sections for a wide range of scattering
angles, kinetic energies, and atomic numbers.

1. Introduction

In 1933 Walter Glaser specified the correct relativistic form of the
refractive index for the propagation of an electron wave through
electric and magnetic fields [1]. On the theory of high-energy electron
diffraction employed in transmission electron microscopy the fields are
commonly assumed to be weak, and thus often a simplified form of the
refractive index, expanded to first order of the field components, is
used for diffraction calculations [2]. In recent years there has been a
growing attention to the effect of the second and higher-order terms,
partly stimulated by the improved spatial resolution of modern low-
voltage transmission electron microscopy, and a couple of calculation
schemes have been devised to improve the accuracy of electron
diffraction simulations [3–7].

These improved calculation schemes all start, to the best of our
knowledge, from the so-called relativistically corrected Schrödinger
equation, which is linear in the electric potential, to develop the higher
order terms to electron scattering. If, however, the correct relativistic
energy-momentum relation were used, an additional term quadratic in
the electric potential would appear already in the wave equation [4], so
that the quadratic and higher order terms to electron scattering would
be distinctly modified, compared to the standard approach on the
relativistically corrected Schrödinger equation.

In order to investigate the relative importance of the quadratic
electrical-potential term ignored so far, first the standard approach to
electron scattering is reviewed including the relevant approximations
and neglecting the effects of electron spin and magnetic field. Then the
approximations are assessed through numerical comparison of the
refractive index at high-angle scattering and of cross-sections for a

wide range of scattering angles, energies, and atomic numbers. Finally
the impact of the approximations on diffraction calculations is dis-
cussed.

2. Theory

2.1. Approximations of the refractive index

The refractive index due to an electrical field [1] can be written in
the form (see Appendix A)
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for kinetic energy E , and rest energy E m c=0 0
2. We follow the

convention that V is positive for an electron in the electric field of a
positive charge; thus V denotes the negative potential energy, see
Appendix A. The form (1) reflects the relativistic energy-momentum
relation underlying the Klein-Gordon equation, see e. g. [4] and
Appendix A.

The phase difference between points P1 and P2 on an electron
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trajectory S, measured relative to the phase difference in vacuum along
the same trajectory, is given by the line integral [8]
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with sd a line element on the trajectory, vacuum wavelength λ0 from the
de Broglie relation for the momentum in vacuum,
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and Planck constant h.
The standard theory of high-energy electron diffraction comprises

the following approximations [8]. First, the refractive index is simpli-
fied by neglecting the term quadratic in V relative to the linear term,
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This form is compatible with the so-called relativistically corrected
Schrödinger equation. Second, the square root is expanded to first
order in V ,
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which is a convenient choice, as the line integral (4) for the phase
extends directly over the potential. Third, in the phase-grating approx-
imation for the electron wave function ψ ,
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the trajectories are assumed to be straight, along a coordinate z, which
involves the small-angle approximation of high-energy electron scat-
tering, and R denotes a coordinate vector perpendicular to the
trajectory direction ẑ .

In improved calculation schemes, starting from the relativistically
corrected Schrödinger equation and aiming at higher accuracy, n1 is
expanded to higher orders,

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟n V

E
V
E

V
E

O V
E

= 1 +
2 *

− 1
8 *

+ 1
16 *

+
*

;1

2 3 4

(9)

the expansion for n yields, however,
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In the correct expansion there appears a factor β1 − 2 in the second-
order and third-order terms, and thus the respective terms in n1 are in
error by β2.

Further, in the limit E → 0, β → 0, v → 0 the refractive index tends
to
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and thus n1 is a reasonable approximation for low energies. In the limit
E → ∞, β → 1, v c→ the refractive index tends to
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and thus the apparently inferior approximation n2 is reasonable for
high energies, as second and higher orders vanish. For medium
energies neither limit applies, and the full expression for n should be
used.

2.2. Scattering from a Coulomb potential

In the above considerations on the second-order and higher-order
terms the relative influence of the magnitude of V E/ * has been left
aside. It may vary over a wide range, as can be seen for the Coulomb
potential energy
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with atomic number Z , and classical electron radius re. Then
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becomes large near the origin. The closest distance to the origin on the
hyperbolic trajectory of Rutherford scattering is [9]
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The scattering angle θ of Rutherford scattering fulfills
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depends only on the scattering angle, which may be substituted by the
wavelength and the magnitude of the scattering vector g.

A value for the largest scattering vector relevant in numerical
simulations can be derived from the reasonable assumption that
thermal atomic vibration poses a limit. In this work we have chosen
the radius at e = 0.0432…π− of the atomic vibration envelope

Bgexp(− /4)2 ,
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with the Debye-Waller parameter B π u= 8 2 2 , and u2 the mean
squared atom displacement. We further assume isotropic atom vibra-
tions, and then: u u u u= = = /3x y z

2 2 2 2 .

2.3. Scattering cross-sections for a screened Coulomb potential

The second-order and higher-order terms in the expansion of n,
which are wrong in n1 and neglected in n2, affect the high-angle
scattering of a Coulomb potential, and it is thus instructive to compare
scattering cross-sections σ for n, n1, and n2. In the numerical simulation
of cross-sections for the scattering into the solid angle Ω limited by
scattering angles θ1 and θ2, considering the azimuthal symmetry of the
Coulomb potential,
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The phase grating approximation (8) is used for the calculation of
the scattering factor [8]

∬g R g Rf i
λ

iϕ πi dΣ( ) = − (exp( ( )) − 1) exp(−2 ⋅ ) ,
Σ

P
0 (21)

with scattering vector g, a coordinate vector R in a plane Σ perpendi-
cular to the trajectory direction ẑ , and the projected phase
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