
Author's Accepted Manuscript

Exploring the Atomic Structure of 1.8 nm Monolayer-Protected Gold Clusters with Aberration-Corrected STEM

Jian Liu, Nan Jian, Isabel Ornelas, Alexander J. Pattison, Tanja Lahtinen, Kirsi Salorinne, Hannu Häkkinen, Richard E. Palmer

www.elsevier.com/locate/ultramic

PII: S0304-3991(16)30333-3

DOI: http://dx.doi.org/10.1016/j.ultramic.2016.11.021

Reference: ULTRAM12251

To appear in: *Ultramicroscopy*

Cite this article as: Jian Liu, Nan Jian, Isabel Ornelas, Alexander J. Pattison Tanja Lahtinen, Kirsi Salorinne, Hannu Häkkinen and Richard E. Palmer Exploring the Atomic Structure of 1.8 nm Monolayer-Protected Gold Cluster with Aberration-Corrected STEM, *Ultramicroscopy* http://dx.doi.org/10.1016/j.ultramic.2016.11.021

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

Exploring the Atomic Structure of 1.8 nm Monolayer-Protected Gold Clusters with

Aberration-Corrected STEM

Jian Liu^a, Nan Jian^a, Isabel Ornelas^a, Alexander J. Pattison^a, Tanja Lahtinen^b, Kirsi Salorinne^b, Hannu Häkkinen^{b,c}, Richard E. Palmer^{a*}

aNanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, UK.

^bDepartment of Chemistry, ^cDepartment of Physics, Nanoscience Center, University of Jyväskylä, namuscri FI-40014 Jyväskylä, Finland

*R.E.Palmer@bham.ac.uk

Abstract

Monolayer-protected (MP) Au clusters present attractive quantum systems with a range of potential applications e.g. in catalysis. Knowledge of the atomic structure is needed to obtain a full understanding of their intriguing physical and chemical properties. Here we employed aberration-corrected scanning transmission electron microscopy (ac-STEM), combined with multislice simulations, to make a round-robin investigation of the atomic structure of chemically synthesized clusters with nominal composition Au₁₄₄(SCH₂CH₂Ph)₆₀ provided by two different research groups. The MP Au clusters were "weighed" by the atom counting method, based on their integrated intensities in the high angle annular dark field (HAADF) regime and calibrated exponent of the Z dependence. For atomic structure analysis, we compared experimental images of hundreds of clusters, with atomic resolution, against a variety of structural models. Across the size range 123 to 151 atoms, only 3 percent of clusters matched the theoretically predicted

Download English Version:

https://daneshyari.com/en/article/5466892

Download Persian Version:

https://daneshyari.com/article/5466892

<u>Daneshyari.com</u>