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A B S T R A C T

Scanning nanobeam electron diffraction strain mapping is a technique by which the positions of diffracted disks
sampled at the nanoscale over a crystalline sample can be used to reconstruct a strain map over a large area.
However, it is important that the disk positions are measured accurately, as their positions relative to a
reference are directly used to calculate strain. In this study, we compare several correlation methods using both
simulated and experimental data in order to directly probe susceptibility to measurement error due to non-
uniform diffracted disk illumination structure. We found that prefiltering the diffraction patterns with a Sobel
filter before performing cross correlation or performing a square-root magnitude weighted phase correlation
returned the best results when inner disk structure was present. We have tested these methods both on
simulated datasets, and experimental data from unstrained silicon as well as a twin grain boundary in 304
stainless steel.

1. Introduction

Strain and its spatial distribution is important for a greater under-
standing of many of the relevant engineering materials currently in use.
In most modern silicon devices, strain is an important parameter used
to modify the properties of the device itself [1]. Likewise in metallic
specimens, understanding strain and its evolution under deformation
will help further the understanding and predictive capabilities of the
field. While many techniques of measuring strain exist [2–9], scanning
convergent nanobeam electron diffraction (NBED) is attractive for a
number of reasons. First, NBED strain mapping offers the potential of
very high accuracy in strain measurement. Independent diffraction
patterns are recorded with high reciprocal space resolution for each
probe position, which limits the spatial resolution to the probe size. On
a modern scanning transmission electron microscope (STEM), this
probe size can easily be below one nanometer while still maintaining a
small enough convergence angle to display full diffraction patterns.
This can be compared with geometric phase analysis (GPA) strain
mapping, in which real space images are acquired with very high
spatial resolution, but do not directly sample reciprocal space.
Additionally, GPA strain maps are necessarily limited to a small field
of view (FOV) as atomic columns must be resolved to make accurate
measurements. With NBED this is not a problem and FOV is usually

limited by the storage space of the data acquisition system or the
sample stability. With the introduction of high speed direct electron
detectors, a large number of diffraction patterns can be obtained from a
single sample, covering a very large field of view without concerns for
sample drift or other instabilities [10,2,11–13].

Cooper et al., have noted that NBED strain measurements can lose
accuracy due to non-uniform disk intensity [12]. This non-uniformity
is due to experimental limitations such as sample bending, dynamical
effects, or imperfect alignment, resulting in more complicated data
sets. The effects of dynamical contrast can be dealt with both during
and after the experiment. During the experiment, the electron beam
can be precessed around the central axis to obtain a radially averaged
diffraction pattern. This has been shown to reduce dynamical contrast
and return diffraction patterns that can be analyzed as if they were
kinematical [14,15]. However, in return for more easily processed
diffraction patterns, acquisition speed is slowed to the speed at which
the beam can be precessed (∼0.1 s per pattern versus 0.0025 s per
pattern with a Gatan K2-IS camera), and the spot size increases as
microscope aberrations have a larger effect on off axis beams.
Alternatively, after the data has been acquired, choices in disk position
measurement, lattice fit to disk positions, and image downsampling
provide a range of options to optimize the data obtained from
malformed disks and recover strain information. Here we present an

http://dx.doi.org/10.1016/j.ultramic.2016.12.021
Received 16 August 2016; Received in revised form 8 December 2016; Accepted 9 December 2016

⁎ corresponding author.
E-mail address: cophus@gmail.com (C. Ophus).

Ultramicroscopy  (xxxx) xxxx–xxxx

0304-3991/ © 2017 Elsevier B.V. All rights reserved.

Please cite this article as: Pekin, T.C., Ultramicroscopy (2017), http://dx.doi.org/10.1016/j.ultramic.2016.12.021

http://www.sciencedirect.com/science/journal/03043991
http://www.elsevier.com/locate/ultramic
http://dx.doi.org/10.1016/j.ultramic.2016.12.021
http://dx.doi.org/10.1016/j.ultramic.2016.12.021
http://dx.doi.org/10.1016/j.ultramic.2016.12.021


overview of the strain mapping technique itself and experimental
options, tested on both simulated data as well as relevant experimental
results.

2. Theory

2.1. Measuring lattice vectors from nanobeam electron diffraction
patterns

Strain measurement via diffracted peak location is a well under-
stood result of Bragg's law, and has been successfully performed using
several different experimental techniques [16,10,11]. For NBED, the
first and most important step is proper data acquisition. While the
sample does not need to be on a perfect zone axis, it must be close
enough to have ideally several orders of diffraction disks illuminated.
For every pixel in the reconstructed strain image, an entire diffraction
pattern must be recorded, shown schematically in Fig. 1a. From each of
these patterns, the disk positions are extracted and stored as an (x,y)
location in reciprocal space, usually to subpixel precision. After all the
disk positions are recorded, they are used to find the local lattice
vectors at every probe position. This is done by solving the system of
linear equations

BL P= , (1)

for L, where L is the matrix made up of two lattice vectors defined by
pixel lengths from the (000) spot, P is a matrix of every disk position in
pixels, and B is a matrix of every disk position in normalized lattice
vectors. Equivalent rows of P and B should correspond to the same
diffraction disk for each diffraction disk registered. Often, this calcula-
tion is overdetermined, as there ideally will be many more disk
positions than lattice vectors. If the solution is overdetermined, the
fit accuracy can be improved by using weighted least squares, where the
weights are equal to the correlation peak value. This calculation is
carried out for every diffraction pattern in the dataset. In addition, a
reference lattice L0 is computed using the disk positions from either a
single real space pixel, or the mean of the disk positions for a subset of
pixels (the reference region of the dataset).

Once the lattice vectors have been calculated for every diffraction
pattern, it is simple to calculate matrix strain using L T L=0 , where L0
is the reference lattice, T is the transformation matrix, and L is the
current lattice for the pixel in question. If infinitesimal strain theory is
assumed, the resulting strain matrix (and infintesimal rotation) is
simply
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Fig. 1. Strain measurements from nanobeam electron diffraction (NBED). (a) Experimental geometry showing a single NBED measurement. The correlation of the measured diffraction
pattern with a center disk template produces an image with sharp peaks at each disk position. Different correlation methods are applied to synthetic disks with (b) no internal structure,
(c) disks with signal on opposite edges and (d) disks with signal along a single disk edge. Each method shows an example correlation image, as well as the horizontal and vertical error
(divided by disk radius) as a function of counts in the ideal disk without internal structure. Red ellipses show the best fit standard deviations for an elliptic Gaussian function on all peaks.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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