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Detector response functions (DRFs) are often used for inverse analysis. We compute the DRF of a sodium
iodide (Nal) nuclear material holdup field detector using the code named g03 developed by the Center for
Engineering Applications of Radioisotopes (CEAR) at NC State University. Three measurement campaigns
were performed in order to validate the DRF’s constructed by g03: on-axis detection of calibration
sources, off-axis measurements of a highly enriched uranium (HEU) disk, and on-axis measurements
of the HEU disk with steel plates inserted between the source and the detector to provide attenuation.
Furthermore, this work quantifies the uncertainty of the Monte Carlo simulations used in and with
203, as well as the uncertainties associated with each semi-empirical model employed in the full DRF rep-
resentation. Overall, for the calibration source measurements, the response computed by the DRF for the
prediction of the full-energy peak region of responses was good, i.e. within two standard deviations of the
experimental response. In contrast, the DRF tended to overestimate the Compton continuum by about
45-65% due to inadequate tuning of the electron range multiplier fit variable that empirically represents
physics associated with electron transport that is not modeled explicitly in g03. For the HEU disk mea-
surements, computed DRF responses tended to significantly underestimate (more than 20%) the sec-
ondary full-energy peaks (any peak of lower energy than the highest-energy peak computed) due to
scattering in the detector collimator and aluminum can, which is not included in the g03 model. We
ran a sufficiently large number of histories to ensure for all of the Monte Carlo simulations that the sta-
tistical uncertainties were lower than their experimental counterpart’s Poisson uncertainties. The uncer-
tainties associated with least-squares fits to the experimental data tended to have parameter relative
standard deviations lower than the peak channel relative standard deviation in most cases and good
reduced chi-square values. The highest sources of uncertainty were identified as the energy calibration
polynomial factor (due to limited source availability and Nal resolution) and the Ba-133 peak fit (only
a very weak source was available), which were 20% and 10%, respectively.
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1. Introduction

A detector response function (DRF) is a function that converts
the energy-dependent flux of incoming source particles incident
on a detector into a detector response (pulse height) spectrum cor-
responding to that observed in experimental detector measure-
ments. The DRF is used to characterize an unknown source
distribution as in the problem of nuclear material controls and
accountancy in quantifying Material Unaccounted For in the form
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of holdup [1], the target application of this work. DRFs have been
investigated and developed for several research and industrial
detection applications. These applications include neutron depth
profiling in substrate manufacturing [2], cosmic radiation detec-
tion and atmospheric monitoring [3], and positron emission
tomography [4]. DRFs have been proposed for nuclear safeguards
and security applications as well, such as border monitoring for
illegal transport of radioactive materials, cargo and package mon-
itoring, and unknown source identification at source recovery sites.

At present, neither a rigorous mathematical formulation nor a
complete physical model exists to describe DRFs. Instead, several
stochastic (Monte Carlo) and empirical models are available and
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reported in the literature. Gardner developed a DRF model through
empirical curve fitting and Monte Carlo analysis [5]. He validated
his DRF against high-fidelity experimental measurements reported
by Heath [6] for 3”x3” and 6”x6" bare Nal detectors using Cs-137
sources centered on the detector’s front axis at a distance of 10 cm.
There was agreement between Gardner’s DRF-computed responses
and Heath’s benchmark detector measurements of the same detec-
tor sizes within two standard deviations of the measured Poisson
uncertainty. Gardner’s model was also found to be more efficient
(required far fewer particle histories for comparatively accurate
calculation) and was shown to match better with the Heath exper-
iments than MCNP’s F8 pulse-height tally.

In this work the Nal DRF model developed by Gardner is used to
characterize a Nal 1”x2” detector for on-axis, off-axis, and attenu-
ated configurations and to validate it against experimental mea-
surements using Cs and HEU sources. Also, uncertainty in the
model is calculated by both Frequentist and Bayesian methods
and compared to measurement and Monte Carlo transport
uncertainties.

1.1. Detector response functions

Mathematically, the DRF, denoted R(H,E), is defined as the
probability that a photon incident on the detector with energy E
yields a pulse with height H [7]. We employ Gardner’s DRF model
in our work due to its efficiency and also because MCNP simulates
responses according to direct energy deposition in the detector
crystal without generating a DRF. A DRF comprises a matrix whose
rows represent the energy of an incident photon and columns cor-
respond to detector channels. Elements of the matrix indicate the
probability of producing a pulse in a channel due to an incident
photon with the given energy. DRFs have been employed in various
applications and more recently have gained interest for use in
inverse transport problems. An accurate DRF matrix equipped with
uncertainty estimates is essential for the success of these applica-
tions. The reason for this is the fact that inverse problems seeking
the determination of a radiation source distribution from a set of
measured detector responses typically require repeated evaluation
of modeled detector responses in the process of searching the state
space for an optimal inverse solution. For computationally inten-
sive models like radiation transport, repeating such forward com-
putations for each evaluated state would be prohibitively
expensive. Instead, computing the adjoint flux (particle impor-
tance) for the same configuration using the column sum of the
detector’s response function matrix as the adjoint source vector
provides an inexpensive means to evaluate the response as the
inner product of the resulting adjoint flux with the source distribu-
tion characterizing the tested state. Consequently, more states can
be tested in search for the distribution that best fits the measured
responses, thus improving the quality of the solution to the inverse
problem.

Gardner’s model generates a DRF for a desired detector size,
source distance and source energy (single peak), and it accounts
for the nonlinear dependence of Nal scintillation efficiency

scintillation light yield
energy deposited

) [%] on the energy deposited in the detector by
the incident photon through the following steps [5]. First, a Monte
Carlo calculation is conducted with the DRFNCS code [8] to simu-
late several hundred detector response spectra where photons
interactions are only allowed to occur within the detector cell
(forced collisions), but leakage of secondary particles is allowed,
producing the continuum segment of the spectra. Only about
100,000 particle histories are necessary to produce results with
uncertainty under 1%, whereas MCNP F8 Gaussian energy-
broadened (GEB) spectra require at least 100 times as many histo-
ries to post-process the Gaussian spectral peaks.

Next, the peaks are stripped from the response spectra so that
each continuum can be processed separately. Principal component
analysis (PCA) is then performed on the correlated response vari-
ables and the covariance matrix to produce a small set of uncorre-
lated variables (principal components). The principal components
and the mean vector are stored as data that reproduces an accurate
continuum when multiplied with the desired number of channels.
Essentially, the continuum can be constructed efficiently without
the need for repeated Monte Carlo simulations for each DRF
generated.

So, when a new DRF is to be generated, the algorithm need only
to generate the full-energy peak of interest by Monte Carlo trans-
port simulation and adds this contribution to the archived contin-
uum to produce the desired DRF [8]. The modified version of
DRFNCS (adjusted by the nonlinear scintillation efficiency) is
implemented in the computer code g03.

Finally, the Monte Carlo simulation in g03 is modified by sev-
eral empirical equations to correct pieces of the spectra that are
not simulated fully by the Monte Carlo calculation. The g03 DRF
peak section is spread according to the power law based on Gaus-
sian peak fitting of measured detector response spectra

or(E) = aE?, (1)

where a and b are empirical fit parameters, and E; is the energy of
the incident photon. o7(E)) is the Gaussian uncertainty of the mea-
sured full-energy peak. Equation (1) is a semi-empirical model rep-
resenting the Gaussian peak response spread, whose parameters are
found by the least-squares fitting of standard deviations of experi-
mentally measured full-energy peak responses produced by the
detector of interest [5].

The flat Compton continuum of the DRF is computed by various
empirical fits of the entire experimental responses (not only the
peaks). This is necessary because there is as of yet some unmod-
eled phenomena causing a higher magnitude of the simulated con-
tinuum than predicted by the included physics models and
observed in the measured data. Simple Compton scattering and
partial energy deposition physics due to electron or photon leakage
through the detector walls can predict the general flat shape of the
Compton continuum but underestimate its magnitude. A normal-
ization factor was developed to account for this effect called the
electron range multiplier, since the effect causing the underestima-
tion of the continuum was believed to be connected to the electron
range in crystalline materials [9]. The empirical relation is given by

R.=1 +A1€<7A2E'> +A3€(7A4E‘) (2)

A1 =39.662, A, =3.4052, A;=15434, A;=0.1576,

where E; is again the energy of the incident photon, and A; through
A, are fit parameters determined from experimental responses. This
unitless factor (R.) is a pseudo-electron range factor designed to
correct the magnitude of the synthetic Compton continuum pro-
duced by Gardner’s DRF. It was originally fit through trial and error
for uncollimated 3”x3” Nal detectors [9] and therefore may be a
source of additional error for the 1”x2” Nal detector of interest in
this work.

1.2. Uncertainty quantification

In the process of comparing measured to computational model
results there is measurement uncertainty, model uncertainty, and
numerical (simulation) uncertainty. Radiation counting (measure-
ment) and Monte Carlo sampling uncertainty approximately follow
a Poisson distribution [10,11].

Determination of the model parameter uncertainty is a more
difficult task. Since the core of Frequentist Theory requires a large
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