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Abstract

In this paper, the first complete implementation of a Hamming neural network based on single-electron devices is presented. A large-scale

network for character recognition simulation based on building block approach was successfully carried out. Simulations were done using

SIMON and MATLAB softwares. Effects such as offset charges and dynamic behavior are taken into account. Moreover, room temperature

operation is considered.
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1. Introduction

Nanoelectronic devices [1,2] are an extremely attractive

option for developing GSI (Giga-Scale Integration) or even

TSI (Tera-Scale Integration) circuits [3] with dimensions

and performance limits [4] beyond the last Semiconductor

Industry Association’s (SIA) roadmap projections [2].

Among nanoelectronic devices, single-electron tunnel-

ing (SET) devices based on tunnel junctions [1,5–7]

present the following features: low power consumption,

reduced dimensions and current control. These features

should allow building chips with a number of devices

orders of magnitude greater than the indicated by the

roadmap [2] still respecting area and power consumption

restrictions. In this sense, a TSI processor may be feasible

in the future.

However, nanoscaled SET devices present instabilities

resulting from local phenomena, like offset charges [8]

and co-tunneling [9]. Such effects can degrade their

electrical performance [1,10]. To overcome these limi-

tations, parallel processing architectures, like neural net-

works, should be considered [3,11]. Artificial neural

networks seem advantageous because of their high

parallelism and redundancy. Consequently, these networks

present robustness against local fluctuations [12].

Competitive neural networks, like winner-take-all

(WTA), provide easiness of operation due their unsuper-

vised training [13,14]. In addition, these neural networks

have a reduced number of control signals, self-organization

and local memory [13,15]. Usually, WTA networks are used

together with another neural network layer to implement

tasks such as: decision making, pattern recognition, feature

extraction, image processing, video compression, Hamming

network and others [16].

In the literature, some SET neurons have already been

proposed. Goossens et al. [17] provided some examples of

single-electron circuits for synapses and neurons. Kirihara

and Taguchi [18] showed a more complex neuron circuit

with n inputs and 6nC2 SET transistors. However, both

worked with supervised networks.

Yamada and Ameniya developed a SET Hopfield

network [19] and a SET Boltzmann machine [20]. Never-

theless, the operation of these circuits had not considered

offset charges and room temperature operation.
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A SET winner-take-all network has already been

proposed [21–23]. This network was simulated implement-

ing a Hamming network taking into account effects such as

offset charges and temperature variations. Nevertheless, the

input layer was simulated mathematically, i.e. it was not

implemented with nanoscaled devices.

In this paper, a Hamming neural network completely

designed using SET devices is presented for the first time. A

character recognition task is simulated at room temperature

using building blocks [22]. Robustness against offset

charges, as well as dynamic behavior are evaluated.

2. Hamming network

The Hamming network [24] is a maximum likelihood

classifier for disturbed bipolar binary inputs. So, for a set of

m exemplar vectors e1
/; e2

/;.; em
/ it finds the exemplar

which is most similar to a given input vector x/.

A Hamming network has two neural layers, as shown in

Fig. 1:

(1) input layer with n neurons;

(2) WTA output layer with m neurons.

The input layer consists of n neurons which provides

matching scores MS1, MS2,.,MSm from the input vector

x/ to each one of the exemplar vectors e1
/; e2

/;.; em
/

which are stored in the weights of this layer [24]. The

matching score is the number of matching elements between

the input vector and the corresponding exemplar vector.

Considering a input vector x/Zðx1; x2;.; xnÞ and an

exemplar vector ei
/Zðe1

i ; e
2
i ;.; eni Þ, where iZ1,.,m,

the matching score (MS) is obtained from [13]:

MSi Z nKHDi MSi Z nK

ðn

jZ1

jxjKe
j
ij (1)

where HDi is the Hamming distance [13]. The Hamming

distance is the number of elements in the input vector that do

not match the corresponding exemplar vector.

These matching scores values are inputs for the WTA

layer that determines which exemplar is closest to the given

input vector x/ [13].

3. SET Hamming network implementation

The first complete implementation at circuit level using

tunnel junctions of a Hamming network is illustrated in

Fig. 2.

The input layer in Fig. 2 is presented for the first time in

this work. In this circuit, the input vector x/Zðx1;.; xnÞ is

represented using input voltages. The synaptic weights are

represented using capacitors C11, C21, C31,.,C1m, C2m,

Cnm. In this way, input voltages injected in weight

capacitances will result in pondered charges q1, q2,.,qm
expressed in Eq. (2).

q1 Z x1C11 Cx2C21 C/CxnCn1

q2 Z x1C12 Cx2C22 C/CxnCn2

«

qm Z x1C1m Cx2C2m C/CxnCnm

(2)

These charges will result in voltages VS1, VS2,.,VSm

respectively at nodes S1, S2,.,Sm shown in Fig. 2.

Fig. 1. Hamming network diagram.
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