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a b s t r a c t

An effective computational method is developed for electronic-structure calculations in few-electron
atoms and ions on the basis of the Dirac-Coulomb-Breit Hamiltonian. The recursive formulation of the
perturbation theory provides an efficient access to the higher-order contributions of the interelectronic
interaction. Application of the presented approach to the binding energies of lithiumlike and boronlike
systems is demonstrated. The results obtained are in agreement with the large-scale configuration inter-
action Dirac-Fock-Sturm method and other all-order calculations.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Highly charged ions provide a unique scenario for probing QED
effects in the strongest electromagnetic fields and give an access to
accurate determination of the fundamental physical constants and
the nuclear parameters [1,2]. The most stringent test of bound-
state QED for highly charged ions is achieved with the Lamb shift
in lithiumlike uranium [3,4]. Investigations of the bound-electron
g factor in hydrogenlike and lithiumlike ions provided the most
accurate value of the electron mass [5] and the stringent tests of
the various bound-state QED effects in the presence of magnetic
field [6,7], including the relativistic nuclear recoil effect [8]. The g
factor and the hyperfine splitting in lithiumlike and boronlike ions
play the leading role for proposed tests of bound-state QED [9,10]
and determination of the fine structure constant [11,12].

Evaluation of the interelectronic-interaction effects is required
to provide accurate theoretical predictions for many-electron ions.
Rigorous treatment of these effects within the framework of
bound-state QED yields the correct results to all orders in the
parameter aZ (a is the fine structure constant, Z is the nuclear
charge). Corresponding calculations through the second order of
perturbation theory (one- and two-photon-exchange diagrams)

have been accomplished for the binding energies in heliumlike
[13], lithiumlike [14–17], berryliumlike [18,19] and boronlike
[20–22] ions. The contributions of the third and higher orders of
perturbation theory are available to date only within the Breit
approximation, which corresponds to the leading orders in aZ.
There are various highly elaborate methods to evaluate these con-
tributions. The starting point of any of these methods is the Dirac-
Coulomb-Breit equation. The many-body perturbation theory
(MBPT) (see, e.g., [23]) assumes evaluation of the perturbation-
theory diagrams and is generally bound by the 2nd or 3rd order.
Most of the other methods treat the interelectronic interaction to
all orders. We mention here the multiconfiguration Dirac-Fock
(MCDF) method (see, e.g., [24]), the coupled-cluster method (see,
e.g., [25]), and many variations of those, which are successfully
applied to relativistic calculations of the neutral atoms and ions
with few valence electrons. However, the most accurate to date
results for few-electron ions have been obtained within the
large-scale configuration interaction Dirac-Fock-Sturm method
(CI-DFS) [26,27]. It has been used to evaluate the third and higher
orders for the binding energies in lithiumlike [17], berryliumlike
[18,19] and boronlike [20–22] ions. It was also applied to the cor-
responding calculations for the g factor [7,28,29], the hyperfine
splitting [30], the transition probabilities [31] and many others.

In the present paper we develop the novel method of calcula-
tion of the interelectronic-interaction contributions to the binding
energies in the Breit approximation. It is based on the perturbation
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theory and is not bound to the lowest orders. In contrast to MBPT,
it allows for evaluation of arbitrary orders on equal footing, with-
out consideration of the individual diagrams. In contrast to all-
order methods, it provides the perturbation-theory terms sepa-
rately, which is advantageous in many cases. It is based on the
recursive formulation of the perturbation theory with the finite
basis set of many-electron wave functions constructed as the Slater
determinants. The one-electron wave functions are found within
the DKB method [32]. This method can be generalized to the calcu-
lations of the g factor, hyperfine splitting and other atomic
properties.

2. Methods and Results

We assume that the few-electron ion under consideration is
described by the Dirac-Coulomb-Breit equation written in the fol-
lowing form,

Kþ H0 þ H1ð ÞKþjAi ¼ EAjAi; ð1Þ

where Kþ is the positive-energy-states projection operator, con-
structed as the product of the one-electron projectors. In order to
formulate the perturbation theory (PT) we split the Dirac-
Coulomb-Breit Hamiltonian H into parts H0 and H1. The zeroth-
approximation part H0 is the sum of the one-electron Dirac
Hamiltonians,

H0 ¼
X
j

hðjÞ; ð2Þ

h ¼ a � pþ bmþ VnucðrÞ þ V scrðrÞ; ð3Þ
where the local screening potential V scrðrÞ is introduced in order to
improve the convergence of the perturbation series. The solutions
to the zeroth-order equation,

KþH0KþjAð0Þi ¼ Eð0Þ
A jAð0Þi; ð4Þ

are the Slater determinants of the one-electron eigenfunctions of
the Dirac Hamiltonian (2). In this work, we consider only the non-
degenerate states described by one Slater determinant, e.g. closed
shells or one electron beyond closed shells. The perturbation part
H1 represents the interelectronic interaction in the Breit approxi-
mation with the screening potential subtracted,

H1 ¼
X
j<k

VBreitðj; kÞ �
X
j

V scrðrjÞ; ð5Þ

VBreit ¼ a
1
r12

� a1 � a2

r12
� 1
2
ða1 � $1Þða2 � $2Þr12

� �
: ð6Þ

The perturbation theory in H1 leads to the following expansions
for the energy EA and the wave function jAi,

EA ¼
X1
k¼0

EðkÞ
A ; ð7Þ

jAi ¼
X1
k¼0

jAðkÞi ¼
X1
k¼0

X
N

jNð0ÞihNð0ÞjAðkÞi: ð8Þ

The Slater determinants jNð0Þi form the orthogonal set of the

solutions to the zeroth-order Eq. (4). The energy corrections EðkÞ
A

and the coefficients hNð0ÞjAðkÞi can be found via the recursive system
of equations,

EðkÞ
A ¼

X
M

Að0Þ H1j jMð0Þ
D E

hMð0ÞjAðk�1Þi �
Xk�1

j¼1

EðjÞ
A hAð0ÞjAðk�jÞi; ð9Þ

hNð0ÞjAðkÞi
���
N–A

¼ 1

Eð0Þ
A � Eð0Þ

N

X
M

Nð0Þ H1j jMð0Þ
D E

hMð0ÞjAðk�1Þi
"

�
Xk�1

j¼1

EðjÞ
A hNð0ÞjAðk�jÞi

#
; ð10Þ

hAjAðkÞi ¼ �1
2

Xk�1

j¼1

X
M

hAðjÞjMð0ÞihMð0ÞjAðk�jÞi; ð11Þ

with the obvious initial values,

hNð0ÞjAð0Þi
���
N–A

¼ 0; ð12Þ
hAð0ÞjAð0Þi ¼ 1: ð13Þ

The Eqs. (9) and (10) follow immediately from the standard
equations of the perturbation theory [33]. Eq. (11) is the conse-
quence of the normalisation condition hAjAi ¼ 1. One can see that
the Eqs. (9)–(11) lead to the standard expressions for the perturba-
tion theory terms, which assume ðk� 1Þ-fold summation for the
energy and k-fold summation for the wave function in the kth
order. In contrast to these expressions, the recursive equations
comprise one summation for each state jNi, so it is twofold effec-
tively. This fact provides the indisputable computational efficiency
for the wave-function corrections of the 3rd and higher orders, and
for the energy corrections of the 4th and higher orders.

Within the standard methods, e.g. MBPT, the matrix elements
with the many-electron wave functions are expanded in terms of
the one-electron functions. On the one hand, it cuts down the
major part of the summations. On the other hand, it forces to con-
sider the corresponding set of diagrams, which multiply exponen-
tially with the PT order. Instead, we work with the presented
equations as is, using the well-known formulae for the matrix

Table 1
Interelectronic-interaction contributions to the ionization energy (in a.u.) of the
2s;2p1=2 and 2p3=2 states in neutral lithium with the Coulomb potential. The results of
the MBPT calculations of the 0th, 1st, 2nd and 3rd orders from Ref. [16] (a) and of the
all-order variational calculations from Ref. [39] (b) are given for comparison.

PT order 2s 2p1=2 2p3=2

0 �1.12517 �1.12517 �1.12503
�1.12517a �1.12517a �1.12503a

1 1.19370 1.40602 1.40571
1.19370a 1.40602a 1.40571a

2 �0.25063 �0.37128 �0.37098
�0.25067a �0.37129a �0.37105a

3 �0.00840 �0.02610 �0.02625
�0.00838a �0.02608a �0.02617a

0–3 �0.19050 �0.11653 �0.11655
�0.19051a �0.11651a �0.11654a

4 �0.004363 �0.010045 �0.110036
5 �0.001812 �0.003373 �0.003369
6 �0.000741 �0.000803 �0.000800
7 �0.000328 0.000043 0.000045
8 �0.000187 0.000199 0.000200
9 �0.000100 0.000129 0.000130
10 �0.000029 0.000101 0.000101
11 �0.000007 0.000122 0.000122
12 �0.000013 0.000089 0.000089
13 �0.000014 0.000008 0.000008
14 �0.000007 �0.000044 �0.000044
15 �0.000001 �0.000037 �0.000037

4–1 �0.00763 �0.01368 �0.01363

0–1 �0.19813 �0.13021 �0.13018

all-order �0.19815972b �0.13024269b �0.13024117b
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