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a b s t r a c t

We address the problem of quantifying the decay of plasmons excited in the electron gas of a condensed
medium. Within the dielectric formalism, we thoroughly describe the theoretical framework in which we
define the damping parameter c. We present two detailed procedures to assess it as a function of the
momentum transfer q, one based on a classical description of the excitation process and the second based
on a quantum formulation of it. We present results corresponding to aluminum and magnesium, and
compare them with experimental data obtained from the literature.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Plasmons are collective excitations of the valence electrons of a
solid and, along with individual excitations, are one the main
causes of the energy loss of an external charged particle traversing
a condensed medium [1,2]. The excitation of plasmons and their
subsequent decay are of great interest in many branches of funda-
mental and applied physics [3–5]. Charged-particle spectroscopic
techniques, such as EELS, REELS, XPS, etc. [6] show distinct features
corresponding to the activation of plasmon modes by the interac-
tion with the incident particle. The shape of the detected signals
is determined to a large extent by the way plasmons interact with
the medium and ultimately decay. In particular, the width of plas-
mon characteristic peaks is mainly given by the way the plasmon
energy is dissipated.

A widely used quantum model to describe these processes was
originally proposed by Lindhard [7], assuming a random phase
approximation (RPA) for the free electron gas. This model takes
into account both types of electronic excitations (individual and
collective), and supplies a very good approximation to the dielec-
tric response of real metals [8]. Within this frame, plasmons decay
into a single electron–hole pair and it only occurs when the
momentum transfer exceeds a critical value [9,10]. Below this
value, plasmons are long-lived excitations with a well defined dis-
persion relation and negligible decay rate. They can be described
using the so-called plasmon pole approximation [11], which mod-

els the typical narrow peak centered at a characteristic frequency
xP and includes a small damping parameter c to account for its
width. In the transition to the individual-excitations regime, the
damping increases and the sharp peak widens. Experimental data
show that the dependence of c with the momentum transfer
reflects this transition with a threshold behaviour around a critical
value [12–14].

The theoretical description of plasmon’s decay has been studied
in several works and with different approaches [15–18]. However,
to our knowledge, an accurate quantitative theoretical model to
calculate the damping rate c remains an open question.

In this work, we explore different methods (from classical to
quantum approaches) for quantifying c in order to determine its
value for realistic situations. The paper is structured as follows:
in Section 2 we briefly develop the theory related to the response
of the electron gas of a solid to the perturbation represented by
an external charged particle. Section 3 is devoted to explain the dif-
ferent methods considered for the calculation of c and to compare
their results between them and with experimental data. Finally, we
make some concluding remarks in Section 4.

2. Theoretical description of plasmon excitation

As we mentioned above, plasmons are one of the most signifi-
cant effects in the response of the electron gas in a solid to an
external perturbation (e.g., a charged particle). In classical electro-
dynamic theory, this response is mediated by the complex dielec-
tric function �ðq;xÞ, which gives the relation between the induced
and the external charge densities in the reciprocal Fourier space
with variables fq;xg. These variables are to be identified with
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the momentum transfer and the frequency of the excitations. Here
we consider an homogeneus and isotropic medium, where the rel-
evant variable is the modulus of the wave vector q ¼j q j, so the
induced charge density qind can be written in terms of the external
charge density qext as

qindðq;xÞ ¼ qextðq;xÞ 1
�ðq;xÞ � 1

� �
: ð1Þ

The zeroes of �ðq;xÞ yield the resonances identified as plasmon
modes, which correspond to the poles of the energy loss function
ELFðq;xÞ:

ELFðq;xÞ ¼ Im � 1
�ðq;xÞ

� �
: ð2Þ

Lindhard’s model gives for �ðq;xÞ the following expression in
terms of the reduced variables u ¼ x=kvF and z ¼ q=2kF:

�Lðu; zÞ ¼ 1þ v2

z2
f 1ðu; zÞ þ if2ðu; zÞ½ � ð3Þ

with vF and kF are the Fermi velocity and Fermi wave vector respec-
tively, v ¼ e2=p�hvF is a density parameter and f 1 and f 2 are given by

f 1ðu; zÞ ¼
1
2
þ 1
8z

gðz� uÞ þ gðzþ uÞ½ � ð4Þ

f 2ðu; zÞ ¼

p
2 u zþ u < 1

p
8z ð1� ðz� uÞ2Þ jz� uj < 1 < zþ u

0 jz� uj > 1;

8>>>>>><>>>>>>:
ð5Þ

with

gðxÞ ¼ ð1þ x2Þ ln xþ 1
x� 1

���� ����:
This formulation divides the plane ðq;xÞ in three regions corre-

sponding to the allowed excitations due to the energy and momen-
tum transfers from the incident particle. Individual excitations take
place in the band region with ju� zj < 1, where the imaginary part
of � is different from zero (Im½�L�– 0). In the other regions there is
no contribution to the ELF, except along a line defined by the con-
dition �L ¼ 0, where the plasmon excitations occur. This line
defines the dispersion curve xplðqÞ, as shown in Fig. 1 for a typical
metal. This figure presents a map of the ELF calculated for alu-
minum using the Lindhard model for �ðq;xÞ. The plasmon reso-
nance xplðqÞ distinctively shows up in the region q < qc;x < xc ,
being ðqc;xcÞ a critical point determined by the intersection of
the plasmon line and the upper boundary of the region of individ-
ual excitations; beyond this critical point, the line widens as it
enters the region where plasmons are heavily damped by the indi-
vidual excitations. The width of these resonances is determined by
the way the plasmon energy is dissipated.

In the context of the plasmon-pole approximation (PPA) the
dielectric function is represented as [11]:

�PPAðq;xÞ ¼ 1� x2
P

xðxþ icÞ þx2
P �x2

q

; ð6Þ

Here, xP is the resonant plasma frequency, and xq ¼ xplðqÞ is
the dispersion relation. The damping is introduced here with c
playing the role of the imaginary part of a complex frequency
(x! xþ ic) and gives the width of the plasmon resonance in
the ELF. A usual approach for the dispersion relation is given by
x2

q ¼ x2
P þ b2q2 þ a2q4 where b is a typical velocity, related to the

Fermi speed as b2 ¼ ð3=5Þv2
F , and a ¼ �h=2me. Notice that, in the

limit q ! 0 we obtain from Eq. (6) the well-known Drude’s approx-
imation [19] which describes the non-dispersive case xq ¼ xP:

�ðxÞ ¼ 1� x2
P

xðxþ icÞ : ð7Þ

Continuing the analysis of Fig. 1, we observe that in the transi-
tion zone it is still possible to follow the plasmon line beyond the

critical point, in a sort of fuzzy dispersion relation x
�

plðqÞ; energy
loss spectra will show a wide peak but with a defined maximum
at a certain value exq. In this sense we will be able to determine
the value of c as a function of q for q > qc . In the following we
explore different approaches to accomplish this task.

3. Determination of the damping parameter c

3.1. The plasmon decay process

The damping of plasmons can be easily visualized through the
following thought experiment. Let us consider an external charge
density, oscillating in an arbitrary direction x with amplitude A,
that is switched off at t ¼ 0,

qextðr; tÞ ¼ Aeik1x�x1tegtHðtÞ; ð8Þ
with HðtÞ ¼ 1 for t 6 0 and HðtÞ ¼ 0 for t > 0, and let g be a small-
ness parameter that will be taken as zero at the end of the calcula-
tion. If we take k1 and x1 as those corresponding to a plasmon
(using the dispersion relation x1 ¼ xplðk1Þ), we ensure that it will
excite a pure plasmon mode of frequency x1 in the x direction.
Now, since the perturbation is switched off at t ¼ 0, we can study
how the plasmon decays for t > 0.

We write the external charge density in Fourier space

qextðq;xÞ ¼ Að2pÞ3dðq?Þdðqx � k1Þ
iðx�x1 � igÞ ð9Þ

Fig. 1. Map of the ELF using Lindhard’s model. The plasmon dispersion relation
xplðqÞ emerges in the q < qc region with a sharp but finite width since we have
considered a complex frequency x ¼ xþ ig in the Lindhard’s equation for �ðq;xÞ.
The line xþðqÞ limits the region where individual excitations are allowed from that
where they are forbidden.
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