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a b s t r a c t

We present an introduction to some concepts of Bayesian data analysis in the context of atomic physics.
Starting from basic rules of probability, we present the Bayes’ theorem and its applications. In particular
we discuss about how to calculate simple and joint probability distributions and the Bayesian evidence, a
model dependent quantity that allows to assign probabilities to different hypotheses from the analysis of
a same data set. To give some practical examples, these methods are applied to two concrete cases. In the
first example, the presence or not of a satellite line in an atomic spectrum is investigated. In the second
example, we determine the most probable model among a set of possible profiles from the analysis of a
statistically poor spectrum. We show also how to calculate the probability distribution of the main spec-
tral component without having to determine uniquely the spectrum modeling. For these two studies, we
implement the program Nested_fit to calculate the different probability distributions and other related
quantities. Nested_fit is a Fortran90/Python code developed during the last years for analysis of atomic
spectra. As indicated by the name, it is based on the nested algorithm, which is presented in details
together with the program itself.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Commonly, a data analysis is based on the comparison between
a function FðaÞ used to model the data that depends on a set of
parameters a (ex. a1 ! amplitude, a2 ! position, etc.) and the data
them-self that consist in recorded number of counts yi at each
channel xi. The estimation of the parameter values describing at
best the data is generally obtained by the maximum likelihood
method (and its lemma, the method of the least squares), which
consists to find the values abest that maximize the product of the
probabilities for each channel xi to observe yi counts for a given
expected value Fðxi;abestÞ.

Even if very successfully in many cases, this method has some
limitations. If some function parameter is subject to constraints
on its values (as ex. one model parameter could be a mass of a par-
ticle, which cannot be negative), the corresponding boundary con-
ditions cannot be taken into account in a well defined manner.
With the likelihood function we are in fact calculating the proba-
bilities to observe the data fxi; yig for given parameter values and
not the probability to have certain parameter values for given
experimental data.

An additional difficulty for the maximum likelihood method
arises when different hypotheses are compared, represented for

example by two possible modeling functions FA and FB, in view
of the acquired data. The determination of the most adapted model
describing the data generally done with goodness-of-fit tests like
the v2-test, the likelihood-ratio test, etc. [1–6]. In the unfortunate
case where there is no clear propensity to a unique model and
we are interested on the value of a parameter common to all mod-
els (as the position of the a peak with undefined shape), no sort of
weighted average can be computed from goodness-of-fit test out-
comes. To do this, the assignment of a probability PðMÞ to each
model is mandatory, which cannot be calculated in the classical
statistics framework.

Another important and fundamental problem of the common
data analysis approach is the requirement of repeatability for the
definition of probability itself. In classic data analysis manuals we
can find sentences as:

‘‘Suppose we toss a coin in the air and let it land. There is 50% prob-
ability that it will land heads up and a 50% probability that it will
land tails up. By this we mean that if we continue tossing a coin
repeatedly, the fraction of times that it lands with heads up will
asymptotically approach 1/2 . . .” [3].

This definition is completely inadequate to rare processes as
those encountered for example in cosmology, where several mod-
els are considered to describe one unique observation, our uni-
verse, and more recently in gravitational-wave astronomy, where
at present only two observations are available [7,8].

http://dx.doi.org/10.1016/j.nimb.2017.05.030
0168-583X/� 2017 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail address: trassinelli@insp.jussieu.fr

Nuclear Instruments and Methods in Physics Research B xxx (2017) xxx–xxx

Contents lists available at ScienceDirect

Nuclear Instruments and Methods in Physics Research B

journal homepage: www.elsevier .com/locate /n imb

Please cite this article in press as: M. Trassinelli, Bayesian data analysis tools for atomic physics, Nucl. Instr. Meth. B (2017), http://dx.doi.org/10.1016/j.
nimb.2017.05.030

http://dx.doi.org/10.1016/j.nimb.2017.05.030
mailto:trassinelli@insp.jussieu.fr
http://dx.doi.org/10.1016/j.nimb.2017.05.030
http://www.sciencedirect.com/science/journal/0168583X
http://www.elsevier.com/locate/nimb
http://dx.doi.org/10.1016/j.nimb.2017.05.030
http://dx.doi.org/10.1016/j.nimb.2017.05.030


To overcome these problems, a different approach has to be
implemented with a new and more general definition of probabil-
ity. This approach is the result of the work of Th. Bayes, P.-S.
Laplace, H. Jeffreys and of many others [9–12] and is commonly
called Bayesian statistics.

Bayesian methods are routinely used in many fields: cosmol-
ogy [13–15], particle physics [16], nuclear physics, . . .. In atomic
physics their implementation is still limited (e.g. in atomic inter-
ferometry [17,18], quantum information [19], ion trapping [20],
ion–matter interaction [21], etc.) with almost no use in atomic
spectroscopy, even if in some cases it would be strongly required.
For example, when we want to determine the correct shape of a
instrumental response function we are actually testing hypothe-
ses, as in the case of the determination of the presence or not
of possible line contributions in a complex or statistically poor
spectrum.

The goal of this article is to present a basic introduction of Baye-
sian data analysis methods in the context of atomic physics spec-
troscopy and to introduce the program Nested_fit for the
calculation of distribution probabilities and related quantities
(mean values, standard deviation, confidence intervals, etc.) from
the application of these methods. The introduction to Bayesian
statics is based in the extended literature on this domain, and in
particular on Refs. [11,14,22–24]. For a clear and practical
presentation, we will present two simple applications of data
analysis where we implemented a Bayesian approach using the
Nested_fit program. The first example is about the probability
evaluation of the presence of a satellite peak in a simple atomic
spectrum. The second one deals with the analysis of a statistically
poor spectrum in which one or multiple peaks contributions has to
be considered and where possible aberrations in the response
function have also to be taken into account. We will in particular
show how to assign probabilities to the different models from
the experimental data analysis and compare them to classical
goodness-of-fit tests. Moreover, we will see how to extract the
probability distribution of the main peak position without the need
to uniquely choose between the different models.

The article is organized as following. A general definition of
probability and Bayesian statistic concepts as the Bayes’ theorem
and Bayesian evidence are present in Section 2, together with a very
general and axiomatic definition of probability deduced from sim-
ple logic arguments. In Section 3 we present in details the nested
algorithm for the calculation of the Bayesian evidence and in Sec-
tion 4 we will see its implementation in the program Nested_fit,
which is also presented. These two sections are quite technical and
they could be skipped in a first reading. Section 5 is dedicated to
the Bayesian data analysis applications to two real data sets and
Section 6 is our conclusion. Two appendixes are also proposed:
one about the introduction of information and complexity con-
cepts in the context of Bayesian statistics, and a second about the
evaluation of the uncertainty of the Bayesian evidence calculated
by the nested sampling method.

2. Probability

2.1. Probability axioms

A very general definition of probability PðXÞ can be obtained by
trying to assign real numbers to a certain degree of plausibility or
believe than assertions X;Y , etc., would be true. X and Y assertions
are very general. They can be assertions of specific statements (ex.
‘‘In the next toss the coin will land heads”) or implying values (ex.
the parameter b is in a certain range ½bmin; bmax]). When basic logic
and consistency are required, the form of the probability P is
ensured by the axioms [22,25,12,24,23]

0 6 PðXjIÞ 6 1; ð1Þ
PðXjX; IÞ ¼ 1; ð2Þ
PðXjIÞ þ Pð�XjIÞ ¼ 1; ð3Þ
PðX;Y jIÞ ¼ PðXjY ; IÞ � PðYjIÞ: ð4Þ

In the equations above, �X indicates the negation of the assertion
X (not-X); the vertical bar ‘‘j” means ‘‘given” and where I represents
the current state of knowledge. For example, I can represent the
ensemble of the physics laws describing a certain phenomenon,
e.g. the thermodynamics laws, and X;Y can represent two quanti-
tative measurements related to this phenomenon, e.g. two temper-
ature measurements at different times of a cooling body. The joint
probability PðX; YjIÞ means that both ‘‘X AND Y” are true (equiva-
lent to the logical conjunction ‘^’). The deduction of these axioms
have been obtained for the first time in 1946 by Richard Cox using
Boolean logic [22]. The first three axioms are compatible with the
usual probability rules. Here we have an additional axiom that, as
we will see, plays a very important role.

From these axioms the following rule (sum rule) is deduced [23]

PðX þ Y jIÞ ¼ PðXjIÞ þ PðY jIÞ � PðX;YjIÞ: ð5Þ
Here the symbol ‘þ’ in the notation X þ Y means the logical

disjunction (X þ Y � X _ Y � ‘‘X OR Y is true”).
The fourth axiom determines the rule for inference probabilities

(product rule) for conditional cases. If X and Y are independent
assertions, this is reduced to the classical probability property

PðX;Y jIÞ ¼ PðXjIÞ � PðYjIÞ: ð6Þ
When a set of mutual exclusive assertions are considered fYig,

with PðYijYj–iÞ ¼ 0, we have the so-called marginalization rule

PðXjIÞ ¼
X
i

PðX;YijIÞ ð7Þ

that in the limit of continuous case Yiþ1 � Yi ! dY becomes

PðXjIÞ ¼
Z 1

�1
PðX;YjIÞdY : ð8Þ

2.2. Bayes’ theorem and posterior probability

Another important corollary can be derived from the fourth
axiom (Eq. (4)) and the similar expression with exchange between
X and Y:

PðXjY; IÞ ¼ PðY jX; IÞ � PðXjIÞ
PðY jIÞ : ð9Þ

This is what is called the Bayes’ Theorem, named after Rev.
Thomas Bayes, who first [9] formulated theorems of conditional
probability, and rediscovered in 1774 and further developed by
Pierre-Simon Marquis de la Laplace [10].

For a better insight in the implication of this theorem, we con-
sider the case where X represent the hypothesis that the parameter
values set a truly describes the data (via the function Fðx;aÞ) and
where Y correspond to the recorded data fxi; yig. In this case
Eq. (9) becomes

Pðajfxi; yig; IÞ ¼
Pðfxi; yigja; IÞ � PðajIÞ

Pðfxi; yigjIÞ
¼ LðaÞ � PðajIÞ

Pðfxi; yigjIÞ
; ð10Þ

where I includes our available background information and where
Pðfxi; yigja; IÞ is by definition the likelihood function LðaÞ for the
given set of data. Differently from the common statistical approach
where only the likelihood function is considered, we have here the
additional term PðajIÞ that includes the prior knowledge on the
parameters a or its possible boundaries. The denominator term
Pðfxi; yigjIÞ can be considered for the moment as a normalization
factor but it plays an important role when different hypotheses
are considered and compared (see next section).
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