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a b s t r a c t

This study gives insight to the design and implementation of the dual extended Kalman filter (dual EKF)-
based maximum pulse current estimation for high accuracy power capability prediction of a Li-Ion
battery. The information on the lumped resistance, which represents the magnitude of the voltage variance
during the predefined time, can be obtained using numerical equations based on two values of the state-
of-charge (SOC) and series resistance Ri estimated by the dual EKF. These obtained lumped resistances
are properly compared with those extracted by the hybrid pulse power capability prediction (HPPC)
technique and the direct current internal resistance (DCIR) technique. Through experimental results that
shows little difference between the estimated lumped resistance and those extracted by the HPPC and
the DCIR techniques, it can be certainly mentioned that this work sufficiently provides an outstanding solu-
tion related to the available maximum pulse current estimation of a Li-Ion battery to be operated within
the safety discharging/charging range. Consequently, our proposed dual EKF-based approach is clearly
appropriate for providing information regarding the reliable power capability prediction.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Currently, rechargeable Li-Ion batteries have become a more
and more attractive selection for power electronics applications,
portable devices, and renewable energy storage systems (RESSs)
[1–3]. In particular, Li-Ion batteries have been gradually recognized
as a promising resolution for electric-powered transportation, such
as electric vehicles (EVs) and hybrid electric vehicles (HEVs) [4–
10]. These activities require accurate and reliable information on
the electrochemical characteristics in order to assure the overall
system performance; that is, they require a battery management
system (BMS) [11–15]. The role of the BMS is to measure the
experimental voltage, current and temperature of the Li-Ion bat-
tery and pack and specifically to manage the opening and closing
of high/low voltage relays related to sequences and protections.
In this case, failure to accomplish a well-designed BMS, leading
to over-charging and over-discharging, may result in permanent
internal degradation of the battery [15]. Therefore, in recent years,
much research work has been performed to attempt to find
an optimal BMS that can resolve the above weakness. Above all,
great attention has been shown regarding the question of the

state-of-charge (SOC) and state-of-health (SOH), which are consid-
ered as representative factors in the BMS for supporting optimal
battery performance and safety in EVs and HEVs [16–40]. Specifi-
cally, current BMSs should have well-established SOC estimation
and SOH prediction algorithms. In practical applications, precise
SOC and SOH information is crucial for efficient battery manage-
ment, for example, where it is necessary to determine how long
the battery will last in order to predict a reliable operating range,
and when to stop charging and discharging in order to prevent
the batteries in EVs and HEVs from over-charging and over-dis-
charging [30].

Nowadays, the SOH implementation can be achieved by capac-
ity-based [31–38] and pulse power-based predictions [39–42]. In
the case of capacity-based prediction, the authors in Refs. [31–
33] presented that this analysis, the most common method, can
provide real information, but can suffer from cycle-life testing
which is time-consuming, costly, and labor intensive, and that
the life prediction from such tests often has limited applicability
under the assumption that the fading mechanisms in the course
of testing remain the same. On the other hand, the other method,
pulse power-based prediction, is known to be an implementation
of power capability prediction under a charging/discharging pulse
current. Examples of this approach are the hybrid pulse power
characterization (HPPC) technique and the direct current internal
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resistance (DCIR) technique. Unfortunately, these tests are gener-
ally implemented at a specific SOC range, therefore, it may be
almost impossible to provide correct information of the power
capability for the entire SOC range. Ref. [43] showed that the mag-
nitude of the internal resistance at the middle SOC range is smaller
than at the low and high SOC ranges. Moreover, due to the differ-
ences in the electrochemical characteristics among Li-Ion batteries,
repeated parameter measurements for power capability prediction
of an arbitrary Li-Ion battery is generally inevitable [44].

The conventional dual extended Kalman filter (dual EKF)-based
approaches facilitated an improved SOH prediction from the sup-
pression of the above drawbacks, in addition to providing SOC esti-
mation [43,44]. In these approaches, the experimental results
obviously showed that two factors such as SOC and capacity for
degraded Li-Ion batteries were well estimated [43,44]. However,
because of the use of an identical value for lumped resistance for
the entire SOC range, these works cannot provide a sufficient satis-
faction in the pulse power-based SOH prediction. As a result, it has
been further shown that these approaches were slightly vulnerable
to over-voltage and under-voltage operating conditions. In general,
the Li-Ion battery has an allowable operating voltage range (which
is narrow) between the fully charged voltage and the case of over-
voltage. When the battery is operated in the over-voltage range, it
suffers from irreversible deterioration or permanent damage.
Therefore, at a high SOC, the battery must be prevented from being
operated at the over-voltage range through the power flow control
of the energy management algorithm of a vehicle controller. For
the same reason, the battery must be prevented from being oper-
ated in the under-voltage range [45]. From this overall perspective,
a definitive answer that uses a lumped resistance properly varied
depending on the SOC range should be considered in the exist
the dual EKF approaches for efficient pulse power-based SOH
prediction.

This research aims to introduce a new approach for the design
and implementation of the dual EKF-based parameter identifica-
tion for high accuracy power capability prediction. The nonlinear
equivalent circuit model (ECM) earlier considered in Ref. [43,44]
is applied to this work (Fig. 1). Through this work, the SOC and ser-
ies resistance Ri can be concurrently estimated. The estimated SOC
and Ri are initially applied to numerical equation and used to
obtain the lumped resistance, which represents the magnitude of
the voltage variance during the predefined time. For reference,
the RC-ladder that is comprised of the diffusion resistance Rd and
the diffusion capacitance Cd is sensitive to the battery degradation.
Fortunately, because of the characteristics of the HEV driving cur-
rent profile which includes a frequent charging/discharging
process, it can be assumed that there is little influence on the

RC-ladder, therefore, the constant values of Rd and Cd are applied
to this work. For verification of this approach, the obtained lumped
resistances are compared with those extracted by the HPPC tech-
nique and the DCIR technique. The comparison clearly shows that
there are little differences between the obtained lumped
resistances and the extracted values. The lumped resistances are
intimately linked with the available maximum charging/discharg-
ing pulse current considered as an essential prerequisite for
improved power capability prediction. The experimental results
showed the clearness of the dual EKF-based approach for reliable
power capability prediction. This work has been extensively
verified by the experimental results conducted on 18,650 Li-Ion
batteries that had a rated capacity of 1.3 Ah [46].

The remainder of this approach is organized as follows. This
approach is divided into six parts, including this introduction sec-
tion. To begin with, a review of the theoretical background on the
dual EKF applied to the ECM is presented in Section 2. Section 3
shows the experimental setup for the implementation of the
charging/discharging cycle for Li-Ion batteries. In the following
section, the proposed approach for achieving the significant pur-
pose of the maximum charging/discharging pulse current estima-
tion is explained. The experimental results that show the
robustness of the proposed approach are presented in Section 5.
In the final section, some conclusions and final remarks are given.

2. Theoretical background on the dual EKF applied to the ECM

2.1. Basic concept of the dual extended Kalman filter (dual EKF)

The dual extended Kalman filter (dual EKF) [43,44,47–50,18,51–
54], which makes use of two EKFs running in parallel, is
extensively used for simultaneous state and model parameter
estimations. In contrast with the Kalman filter applied for linear

Nomenclature

Subscripts, superscripts
k time step index
chg charge
dis discharge
max upper limit value
min lower limit value
^� a posteriori estimation value
^+ a priori estimation value

Symbols

Ri series resistance of the ECM
Rd diffusion resistance of the ECM
Cd diffusion capacitance of the ECM

Vd diffusion voltage of the ECM
Vk terminal voltage of the ECM
Cn discharge capacity
xk state vector (SOC and Vd in the ECM)
hk parameter vector (capacity and series resistance Ri in

the ECM)
yk measurement vector (terminal voltage in the ECM)
wk process noise (of the state x/weight filter h)
tk measurement noise
Qk process noise covariance of the state x/weight filter h

Rk observer noise covariance
Pk covariance matrix of the state estimation uncertainty
Hk measurement sensitivity matrix
Kk Kalman gain

OCV

+

Vk

−

+
−

Rd

Cd

+   Vd −

R i

ik

Fig. 1. Nonlinear equivalent circuit model (ECM) including the open-circuit voltage
(OCV), a series resistance Ri in series with a parallel diffusion resistance Rd and
diffusion capacitance Cd.
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