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a b s t r a c t

The probability of close collisions (PCC) of high-energy protons in a bent crystal was estimated for differ-
ent orientations of the crystal with respect to the direction of motion of the particles. This allowed to
carry out the comparison of the PCC for three main mechanisms of beam deflection by a bent crystal: pla-
nar channeling, volume reflection and stochastic deflection. The comparison showed that for positively
charged particles the lowest PCC corresponds to stochastic deflection and the highest PCC corresponds
to volume reflection.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

If a high-energy charged particle moves in a crystal near one of
the main crystallographic axes or planes, correlations between suc-
cessive collisions appear. As a result of these correlations the prob-
ability of close collisions (PCC) of the particle differs from the PCC
in the case of motion in an amorphous medium. Recently in [1] the
comparison of the PCC of high-energy positively charged particles
in a bent crystal in conditions of planar channeling (PC) and
stochastic deflection (SD) was carried out. The comparison shown
that in the case of SD the PCC is much smaller than in the case of
PC. This result was recently confirmed in an experiment at CERN
[2]. In this article we continue the investigation of the PCC of
high-energy charged particles in a bent crystal. We analyze the
dependence of this probability on the angle between the direction
of the crystallographic axis and the initial direction of motion of
the beam. This analysis allows us within a single model to compare
the PCC for three main mechanisms of beam deflection: planar
channeling in a bent crystal (proposed by E.N. Tsyganov in [3,4]),
volume reflection (proposed by A.M. Taratin and S.A. Vorobiev in
[5]) and stochastic deflection (proposed by A.A. Grinenko and N.
F. Shul’ga in [6]).

2. Estimation of the PCC for straight crystal

When a high-energy charged particle moves in a crystal under a
small angle with respect to one of the main crystallographic axes,
the problem of finding the trajectory of the particle can be simpli-
fied by using the model of continuous potential [7]. In this model
the potential of atomic strings is averaged over the direction of
the crystal axis. This allows to reduce the problem of particle
motion in a crystal to the problem of motion in a plane that is
orthogonal to the axis. Without loss of generality, we will consider
particle motion near the h110i axis of silicon crystal. The orienta-
tion of the crystal and the coordinate system that we use in our
consideration are shown in Fig. 1. The figure shows that x-axis is
orthogonal to the ð1�10Þ plane and lies in the bending plane, y-
axis is orthogonal to the bending plane ð001Þ and z-axis coincides
with the direction of the h110i crystal axis at the point of incidence
of the particles on the crystal. So, in our model the potential of the
crystal is the sum of continuous potentials of the bent atomic
strings, that at the point of incidence of particles on the crystal
are parallel to the h110i crystal axis.

Let us start the consideration of the PCC of high-energy posi-
tively charged particles in a crystal from the particle motion in
an unbent crystal. The comparison between the particle motion
parallel to atomic strings (that in the case of a bent crystal corre-
sponds to SD) and PC in this case was done in [1]. The ratio
between the PCC in these two regimes of motion was estimated
in order of magnitude as Pa

Ppl
¼ prT

a , were rT is the rms atomic thermal

vibration amplitude in one direction (rT ¼ 0:075 Å for Si at 293K), a
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is the lattice constant (a ¼ 5:431 Å for Si crystal). We will now try
to compare the PCC in the case of planar channeling and above-
barrier motion of a relativistic positively-charged particle in a thin
crystal near one of the main crystallographic axes. For analytical
consideration of this problem we use a simple approximation of
the potential energy of the particle in the field of atomic planes:

UðxÞ ¼ U0

2
1� cos 2p x

dp

� �� �
; ð1Þ

where U0 is the depth of potential well, dp is the distance between
neighboring atomic planes. To find a particle trajectory in the field
(1) one must solve the equation of motion

d2x

dt2
¼ � c2

E
@UðxÞ
@x

; ð2Þ

where E is the energy of the particle. The solution of Eq. (2) can be
found as

xðtÞ ¼ � dp

p
am

pcðt þ b2Þ
dp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U0

E
1þ b1ð Þ

r
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1þ b1

s !
; ð3Þ

where amðu; kÞ is the Jacobi amplitude (the inverse function of the
elliptic integral of the first kind) [8]. If we assume that in the
moment t ¼ 0 coordinate x was equal to zero, the parameter b2 is
equal to zero, since amð0; kÞ ¼ 0. To find b1, we can find the deriva-
tive of xðtÞ at t ¼ 0:

vxð0Þ ¼ �c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U0

E
1þ b1ð Þ

r
; ð4Þ

and from (4) we obtain that b1 ¼ E
U0

v2
x ð0Þ
c2 � 1. Introducing the critical

angle of planar channeling [7] as hc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2U0=E

p
and the angle

hx;0 ¼ vxð0Þ=c we can rewrite (3) as

xðtÞ ¼ dp

p
am

ptvxð0Þ
dp

;
hc
hx;0

� �
: ð5Þ

The character of the dependence of the solution (5) on t is
defined by the second argument of the Jacobi amplitude and for
different values of k ¼ hc

hx;0
is shown in Fig. 2. The under-barrier

motion (planar channeling) corresponds to k > 1, i.e. hx;0 < hc ,
and the above-barrier motion corresponds to k < 1, i.e. hx;0 > hc .
If hx;0 is slightly higher than hc (see k = 0.99 in Fig. 2) positively
charged particles ‘‘hang” over atomic planes (n-th plane has coor-
dinate xn ¼ 2nþ1

2 dp;n 2 Z) (we use the terminology proposed in
[10]).

The PCC in a short amorphous target could be written as the
product of the collision cross section r, the atomic density N and
the thickness of the target L : P ¼ rNL. In a short oriented crystal

the PCC of a high-energy particle can be written in a similar way
with a help of the integration over the particle trajectory:

P ¼ rvz
R Tout
Tin

N x; y; zð Þdt, where the atomic density depends from

the particle coordinate and we assume that the particle impinges
on the crystal at t ¼ Tin and withdraws from the crystal at
t ¼ Tout . In the case of motion in the field of atomic planes the
atomic density depends only from one coordinate:
Nðx; y; zÞ ¼ NðxÞ. If we assume that the atomic density near the
atomic plane has a Gaussian distribution with a mean of expecta-
tion in xn ¼ 2nþ1

2 dp (the coordinate of the n-th atomic plane loca-
tion), then the PCC can be found as

P ¼ rNvzdpffiffiffiffiffiffiffiffiffiffiffi
2pr2T

q Z Tout

Tin

X
n

exp � xðtÞ � 2nþ1
2 dp

� �2
2r2T

 !
dt: ð6Þ

If we assume that the crystal is infinite in x direction, the sum-
mation over n can be done analytically and thus we obtain

P ¼ rNvz

Z Tout

Tin

#4 p xðtÞ
dp

; exp �2p2r2T
dp

� �� �
dt; ð7Þ

where #4ðf; qÞ is the Jacobi Theta Function of the fourth kind [8].
Using the solution of the equation of motion (5) we can find the

dependence of the PCC on hx;0:

Fig. 1. The orientation of a bent Si crystal with respect to the impinging charged particles.

Fig. 2. Positively-charged particle trajectories in the field (1).
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