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a b s t r a c t

The problems of the existence, generation, propagation and registration of long-distant undamped ther-
mal waves formed in pulse radiative processes have been theoretically analyzed and confirmed experi-
mentally. These waves may be used for the analysis of short-time processes of interaction of particles
or electromagnetic fields with different targets. Such undamped waves can only exist in environments
with a finite (nonzero) time of local thermal relaxation and their frequencies are determined by this time.
The results of successful experiments on the generation and registration of undamped thermal waves at a
large distance (up to 2 m) are also presented.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

The problem of precise registration of interaction of particles or
electromagnetic fields with different targets is very important for
high-energy physics. Typically, secondary X-rays or secondary par-
ticles are used for such registration. This method requires special
fast detectors with very high time resolution. Thermal effects in
this interaction are considered as insignificant because tradition-
ally it is assumed that heat waves, caused by transient radiative
processes, are quickly damped and cannot be the carrier of reliable
information. This conclusion is related to the traditional method of
describing thermal processes and their wave equations.

Traditionally, classical Fourier’s hypothesis has been used for
heat conduction problems. The Fourier’s hypothesis states that
heat flux is proportional to the absolute value of the temperature
gradient and it has the opposite direction. In a 50th of last century
the first attempt to analyze non-stationary heat transfer processes
was made by Cattaneo and Vernotte, that leads to a hyperbolic
equation for temperature fields [1,2]. Hyperbolic and non-linear
parabolic heat transfer models were studied during the second half
of the twentieth century and a number of new heat transfer
regimes were found, including traveling wave, blow-up regimes,
and others [3]. The hypothesis of finite velocity of thermal signal
propagation became especially popular in last two decades. Also,
such non-stationary solutions as temperature waves started to

attract the attention of researchers especially for application in
scanning thermo-wave microscopy (STWM), that is a method of
investigating the layers below the surface to determine heat con-
ductivity [4–6].

Unfortunately, all these methods and models of thermal pro-
cesses, which are successfully used for solving problems of modern
thermodynamics, were not used for the analysis and efficient pro-
cessing of the experimental data, which are related to an interac-
tion of accelerated particles with targets. It is well known that in
such interactions, local heat generation takes place. Such problems
include operational analysis and measurement of the duration and
structure of short bursts (bunches) of accelerated particles.
Another very important problem relates to the search for methods
of rapid heat removal from the interaction area.

We examined in details the problem [7–11] and came to new
results, which were later confirmed in specially conducted experi-
ments. The new methods discussed below show that more correct
and adequate use of the thermal effects can be used for such tasks.

2. The wave equation for short-term or high-frequency thermal
processes in material media with finite time of thermal
relaxation

Let’s consider a simple model of the interaction of pulsed radi-
ation with targets when such interaction leads (among other
effects of radiation) to heat release. Space–time dynamics of ther-
mal processes Tð~r; tÞ is usually analyzed in the terms of parabolic
equation of thermal diffusivity:
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qcv
@Tð~r; tÞ

@t
¼ div ½k � gradðTð~r; tÞÞ� ð1Þ

This fundamental equation follows from classical Fourier law
for heat flux ~qð~r; tÞ
~qð~r; tÞ ¼ �k � gradðTð~r; tÞÞ ð2Þ
in a medium with thermal-conductivity coefficient k and from the
equation of continuity

qcv
@Tð~r; tÞ

@t
¼ �div~qð~r; tÞ ð3Þ

which follows from the energy conservation law in media with
mass density q and heat capacity cv . It is important to note that
these fundamental Eqs. (1)(3) are based on the principle of local
thermodynamic equilibrium. In the result any nonequilibrium sys-
tem with temperature gradient gradðTð~r; tÞÞ, local concentration of
particles and other nonequilibrium characteristics is described by
the implicit introduction of the local equilibrium states of small
subsystems. Such approximations are applicable only to slow pro-
cesses, when the subsystem relaxation time s to an equilibrium
state is much less than the characteristic time of the process under
consideration. Typical values of s for different material environ-
ments are given below. It is reasonable to note that a decrease in
the size of the selected subsystem does not alter this situation
because formation of equilibrium is determined by the interaction
efficiency and not by the subsystem size.

In the case of a 1D homogeneous material environment with
thermal-diffusivity coefficient G ¼ k=qcv the solution to the ‘‘stan-
dard” equation of thermal diffusivity

@Tðx; tÞ
@t

¼ G
@2Tðx; tÞ

@x2
ð4Þ

is the superposition of rapidly damped counter-propagating tem-
perature waves

Tðx; x; tÞ ¼ Axeiðxt�kxÞ þ BxeiðxtþkxÞ � Axe�jxeiðxt�jxÞ þ BxejxeiðxtþjxÞ;

k ¼ jð1� iÞ; j ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
x=2G

p
ð5Þ

It can be seen from (5) that the damping coefficient d � j of
both ‘‘ordinary” counter-propagating temperature waves is equal
to the real part of the wave number, i.e., k ¼ j. As the result, these
waves are attenuated at a distance comparable with the frequency-
dependent wavelength, which depends on the thermodynamic
parameters of a medium.

From (4) follows the expressions for phase and group velocities
of thermal waves

vp ¼ x=Rek ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
2Gx

p
; vg ¼ RefdkðxÞ=dxg�1 ¼ �

ffiffiffiffiffiffiffiffiffiffiffi
8Gx

p
ð6Þ

It is obvious that such strongly damped waves are poor carriers
of information about radiative processes over long distances.In [7–
9] we have predicted the existence of weakly damped (and under
certain conditions even undamped) high frequency temperature
waves, which can propagate without dissipation through material
media with finite time s of local thermal relaxation to the thermo-
dynamic equilibrium state. The thermal-relaxation processes occur
without the use of the hypothesis of instantaneous thermal relax-
ation and they can be properly described by the means of the mod-
ified continuity equation

qcv
@Tð~r; t þ sÞ

@t
¼ �div~qð~r; tÞ ð7Þ

which corresponds to the integral relationship

@

@t

Z
V
WTð~r; t þ sÞdV ¼ �

Z
S

~qð~r; tÞ~ndS ð8Þ

Here WTð~r; t þ sÞ ¼ qcvTð~r; t þ sÞ is the volume heat-energy density
and ~n is the vector of the external normal to the surrounding
selected small-size volume V surface.

The substitution of (2) into (7) provides a time-delay equation
of thermal conductivity. In the case of 1D medium, we have the fol-
lowing modified equation of thermal diffusivity

@Tðx; t þ sÞ
@t

¼ G
@2Tðx; tÞ

@x2
ð9Þ

which differs from the ‘‘standard” Eq. (4) by the presence of the
delay time s (local relaxation time).

3. The reasons of existence and the mechanisms of excitation of
undamped thermal waves

The solution of Eq. (9) is the superposition of counter-
propagating temperature waves

Tðx; x; tÞ ¼ Ax exp �j cosxsffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þsinxs

p x
� �

expfiðxt � j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sinxs

p
xÞgþ

Bx exp j cosxsffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þsinxs

p x
� �

expfiðxt þ j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sinxs

p
xÞg; cosxs P 0;

ð10Þ
which is fundamentally different from ‘‘standard” solution (5) of
simplified Eq. (4). For this case, we have the modified expressions
for the damping coefficient d and phase velocity

d ¼ j
cosxsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sinxs

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x=2G

p cosxsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sinxs

p ð11Þ

vp ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Gx
1þ sinxs

r
¼ �

ffiffiffiffiffiffiffiffiffiffiffi
2Gx

p

j cosðxs=2Þ þ sinðxs=2Þj ð12Þ

At s ¼ 0 solutions (5) and (10) coincide, but at s–0 these results are
fundamentally different.

If cosxs < 0 in (10) then temperature waves with frequencies
corresponding to this condition cannot be excited because their
existence contradicts the causality principle, i.e., the wave ampli-
tude increases in the propagation direction.

Waves with frequencies

xn ¼ ðnþ 1=2Þp=s; n ¼ 0;1;2; . . . ð13Þ
which satisfy the condition cosxns ¼ 0, correspond to damping
coefficient d ¼ 0. In this case the general solution (10) is the super-
position of forward and backward undamped temperature waves.

Tðxn; x; tÞ ¼ Axn expfiðxnt � j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sinxns

p
xÞg þ Bxn

� expfiðxnt þ j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sinxns

p
xÞg ð14Þ

The physical cause of undamped waves is related to the optimal
phase relations, which determine the balance between the arrival
and removal of energy in a given place and can be obtained from

the dispersion equation ixeixs ¼ �k2G [7–9] which follows from
Eq. (9). Such a relation can exist at selected frequencies only in
the absence of instantaneous, irreversible phase relaxation (at
s–0). Such a situation is similar to processes that take place in
the quantum mechanics and the theory of oscillations (e.g. photon
and phonon echo or propagation of undamped solitons in different
material media).

Undamped temperature waves can be excited via at least two
methods, in which the surface or volume of the medium under
study is exposed to:

a) periodic thermal actions (periodic heating) with frequencies
(13),

b) short heat pulses with a duration of Dt < s.
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