
Improving accuracy and capabilities of X-ray fluorescence method using
intensity ratios

Andrey V. Garmay ⇑, Kirill V. Oskolok
Department of Chemistry, Moscow State University, Moscow 119991, Russia

a r t i c l e i n f o

Article history:
Received 20 October 2016
Received in revised form 1 February 2017
Accepted 25 February 2017
Available online 8 March 2017

Keywords:
X-ray fluorescence
Intensity ratio
Scattered radiation
Steel
Oxides
Iron ore

a b s t r a c t

An X-ray fluorescence analysis algorithm is proposed which is based on a use of ratios of X-ray fluores-
cence lines intensities. Such an analytical signal is more stable and leads to improved accuracy. Novel cal-
ibration equations are proposed which are suitable for analysis in a broad range of matrix compositions.
To apply the algorithm to analysis of samples containing significant amount of undetectable elements a
use of a dependence of a Rayleigh-to-Compton intensity ratio on a total content of these elements is sug-
gested. The technique’s validity is shown by analysis of standard steel samples, model metal oxides mix-
ture and iron ore samples.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

X-ray fluorescence (XRF) method allows fast and precise deter-
mination of elemental composition of samples of various genesis.
Different techniques and calibration methods have been proposed
since early 1950-s in order to reach the best precision and to broad
an application field of the method. A comprehensive review of
these techniques including fundamental parameters method (FPM)
is given by R.M. Rousseau [1]. However, all the techniques were
originally designed for analysis of homogeneous samples with flat
polished surface, e.g. massive steel samples, fused borate disks, etc.
Therefore, none of the techniques (except FPM) can be applied for
the analysis of non-conventional samples (finished technical prod-
ucts, samples with unpolished surface, metal filings, various pow-
ders with different grain size, etc.) without appropriate calibration
and often a great number of reference samples, but adequate stan-
dard samples are often unavailable [2]. Besides, when a specimen
contains significant amounts of elements that cannot be detected
(undetectable elements (UE)), most of these techniques fail to give
adequate results. Some other methods using primary radiation
scattered by a sample were suggested to solve this problem

[3–8], but their application is usually limited to a narrow matrix
composition range restricted by calibration samples and often
requires a large number of reference standards.

Il’in showed that if a ratio of XRF lines intensities is applied as
an analytical signal, then accuracy of analysis improves and the
influence of the sample shape and surface quality decreases signif-
icantly [2]. However, matrix effects influence is still strong and
should be taken into account.

In a current work, we present a novel equations with theoretical
coefficients based on intensity ratios. These equations allow one to
improve the accuracy of XRF analysis, to broad the matrix compo-
sition range, in which the analysis can be performed with the same
accuracy with the same calibration samples, and to analyze non-
conventional samples with a reduced number of standard samples.

2. Theory

2.1. Algorithm for samples not containing UE

A dependence of XRF intensity ratio on a concentration ratio
occurred to be linear in a broad range of concentration ratios [2].
However, it is still influenced by other elements. Let us consider
Ni-Fe-Cr tertiary system under monochromatic approximation.
To take into account that the primary radiation is polychromatic
and heterogeneous due to its characteristic constituents, it is better
to use different effective wavelengths kpri of the primary radiation
for each element i [9,10]. These wavelengths are chosen so that
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their influence is similar to the averaged influence of the whole pri-
mary radiation spectrum. Then nickel-to-iron Ka-lines intensity
ratio is given by the following equation:

INiKa
IFeKa

¼ gNi

gFe

CNi

CFe

kNi
kFe

pNiKa

pFeKa

� lNiðkprNiÞ � IprðkprNiÞ=MNi

lFeðkprFeÞ � IprðkprFeÞ=MFe þ 1=2� dFe;NiKa þ 1=2� dFe;NiKb
;

ð1Þ

where IiKa is an intensity of Ka-line of an element i, gi is a propor-
tionality constant dependent upon the instrument used, ci is a mass
fraction of the element i, Ipr(k) is an intensity of primary radiation at
a k wavelength,

ki ¼ Si � 1
Si

xi;

Si is a jump ratio of element i for K-edge of considered line, xi is
a fluorescence yield for considered line of element i, pi is a fraction
of element’s i Ka-line in the total intensity of K-series, li(k) is a
mass attenuation coefficient of the element i at the k wavelength,
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u is an angle between the sample and an incident x-rays,w is an
angle at which XRF radiation is detected (‘‘take-off angle”) [11].

Rearrangement of (1) gives
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where kNi=Fe ¼ gNikNipNiKa=gFekFepFeKa. Let us then consider Mi/Mj

� const (which is, of course, rather rough approximation). Then,
taking into account that CNi = (CNi + CFe)RNi/Fe/(1 + RNi/Fe) and CFe =
(CNi + CFe)/(1 + RNi/Fe), where RNi/Fe = CNi/CFe, and that CNi + CFe =
1 � CCr in the considered case, we can rearrange (2) as follows:
INiKa
IFeKa

¼ kNi=FeRNi=Fe
a0 þ aCr � CCr

b0 þ bCr � CCr
; ð3Þ

where
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bCr ¼ lFeðkprFeÞIpr ðk
pr
FeÞ

lNiðkprNiÞIpr ðk
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Ni
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liðkj; kkÞ ¼ liðkjÞ � cosec/þ liðkkÞ � cosecw:

For multielement sample, the Eq. (3) will take the following
form:

IiKx
IjKy

¼ ki=jRi=j

a0 þ
X

k–i;j
akCk

b0 þ
X

k–i;j
bkCk

¼ aRi=j: ð4Þ

However, beside approximations used, there is a problem of
coefficients ai, bi being dependent on the concentration ratio Ri/j

of the chosen pair of elements i and j. Thus, the Eq. (4) will require
a very close first approximation of the sample composition and will
allow one to obtain accurate results only in narrow ranges of con-
centrations of all elements, i.e. in narrow range of the matrix compo-
sition. Such a situation took place with Rousseau’s fundamental
algorithm (FA), which required a use of a Claisse-Quintin algorithm
with separate calibration samples set for obtaining the first
approximation [1].

An alternative approach was suggested by Pavlinsky and Vladi-
mirova [12]. They first calculated XRF lines intensities for several
tens of samples and then used this calculated intensities to find
the values of the parameters of their model by the least squares
method (LSM). This allows one to broad an operating range of
matrix compositions and to reduce bias caused by the approxima-
tions used. Therefore, we also apply this approach to calculate the
parameters of our model. However, when the concentration ratios
Ri/j are relatively large, some of the assumptions made do not work,
which gives rise to a significant constant term, though the depen-
dence is still linear:

IiKx
IjKy

¼ a0 þ a1Ri=j: ð5Þ

Nevertheless, both the coefficients a0 and a1 were found to be
best fit by an expression similar to that of the coefficient a in (4),
so after dividing both numerator and denominator of (4) by b0

a0 ¼ a00 þ
P

k–i;ja01kCk

1þPk–i;jb01kCk
; a1 ¼ a10 þ

P
k–i;ja1kCk

1þPk–i;jb1kCk
:

However, it was found empirically that often second-order
terms are necessary to describe a dependence of a0 on concentra-
tions Ck more accurately. Therefore

a0 ¼ a00 þ
P

k–i;ja01kCk þ
P

k–i;ja02kC
2
k

1þPk–i;jb01kCk þ
P

k–i;jb02kC
2
k

:

2.2. Algorithm for samples containing UE

Almost all algorithms of XRF analysis of samples with signifi-
cant content of UE are models based on the use of a scattered radi-
ation. Often they are more or less adequate regression models [13].
Nevertheless, some models have theoretical basis. Among them
Bakhtiarov’s technique [6], so-called backscatter fundamental
parameters (BFP) method [3,4] and Szaloki’s algorithm [5] are
notable. The first one is suitable for determination of heavy metals
in any concentration and in any light matrix. However, empirical
regression models are necessary for analysis of samples containing
high amounts of other heavy elements, especially heavier than the
element being determined [6]. Thus, matrix composition range will
be restricted by calibration samples, and errors caused by differ-
ence in samples’ shape, particle sizes, surface quality are possible.
BFP is an attempt to expand FPM to samples containing UE, but it
requires using absolute intensities of scattered radiation, that in
fact again leads to a dependence of the results on samples’ shape,
surface quality and other experimental factors difficult to control.

Szaloki’s algorithm is also an attempt of expanding FPM to sam-
ples containing UE. It utilizes using Rayleigh-to-Compton intensity
ratio IR/C to determine an average atomic number of the sample ZS
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