Accepted Manuscript

Features of microstructure of ZrN, $\rm Si_3N_4$ and $\rm ZrN/SiN_X$ nanoscale films irradiated by Xe ions

V.V. Uglov, G. Abadias, S.V. Zlotski, I.A. Saladukhin, I.V. Safronov, V.I. Shymanski, A. Janse van Vuuren, J. O'Connell, V. Skuratov, J.H. Neethling

PII: S0042-207X(16)31075-2

DOI: 10.1016/j.vacuum.2017.03.015

Reference: VAC 7338

To appear in: Vacuum

Received Date: 28 December 2016 Revised Date: 21 February 2017

Accepted Date: 8 March 2017

Please cite this article as: Uglov VV, Abadias G, Zlotski SV, Saladukhin IA, Safronov IV, Shymanski VI, Janse van Vuuren A, O'Connell J, Skuratov V, Neethling JH, Features of microstructure of ZrN, Si₃N₄ and ZrN/SiN_X nanoscale films irradiated by Xe ions, *Vacuum* (2017), doi: 10.1016/j.vacuum.2017.03.015.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Features of microstructure of ZrN, Si₃N₄ and ZrN/SiN_x nanoscale films irradiated by

Xe ions

V.V. Uglov^{1,2,3}, G. Abadias⁴, S.V. Zlotski¹, I.A. Saladukhin¹, I.V. Safronov¹,

V.I. Shymanski^{1,2}, A. Janse van Vuuren⁵, J. O'Connell⁵, V. Skuratov⁶, J. H. Neethling⁵

¹Belarusian State University, Minsk, 220030, Nezavisimosti ave., 4, Belarus

²Tomsk Polytechnic University, Tomsk, 634028, Lenina ave., 2a, Russia

³National Research Nuclear University "MEPhI" (Moscow Engineering Physics Institute),

Moscow, 115409, Kashirskoe highway, 31, Russia

⁴Institut Pprime, Université de Poitiers-CNRS-ENSMA, Dpt. Physique et Mécanique des

Matériaux, SP2MI, Téléport 2, F86962 Chasseneuil-Futuroscope cedex, France

⁵Centre for HRTEM, Nelson Mandela Metropolitan University, 6031 Port Elizabeth, South

Africa

⁶Joint Institute for Nuclear Research, Dubna, 141980 Moscow region, Joliot-Curie 6, Russia

Corresponding author: Uglov Vladimir

Belarusian State University, 4 Nezavisimosti ave., 220030 Minsk, Belarus

e-mail: uglov@bsu.by

Abstract

The article reports on the TEM investigations of microstructure features after Xe

irradiation (360 keV and 5·10¹⁶ cm⁻²) of ZrN, Si₃N₄ monolithic films and ZrN/SiN_x

multilayered film deposited by magnetron sputtering. Results of TEM study of ZrN

nanocrystalline film, irradiated by Xe ions, have shown that this film seems to be almost

unaffected by the implantation. Only a small amount of damage is observed. In SiN_x

1

Download English Version:

https://daneshyari.com/en/article/5468087

Download Persian Version:

https://daneshyari.com/article/5468087

Daneshyari.com