Microelectronics Reliability 54 (2014) 2645-2648

Contents lists available at ScienceDirect

MICROELECTRONICS
RELIABILITY

Microelectronics Reliability

journal homepage: www.elsevier.com/locate/microrel

Research note

Optimized parallel decoding of difference set codes for high speed
memories

@ CrossMark

Mustafa Demirci?, Pedro Reviriego ™*, Juan Antonio Maestro "

2 Aselsan, Mehmet Akif Ersoy Mahallesi 296, 16, 06370 Yenimahalle, Ankara, Turkey
b Universidad Antonio de Nebrija, C/Pirineos, 55 E-28040 Madrid, Spain

ARTICLE INFO ABSTRACT

Article history:

Received 12 March 2014

Received in revised form 25 May 2014
Accepted 30 June 2014

Available online 27 July 2014

The interest in using advanced Error Correction Codes (ECCs) to protect memories and caches is growing.
This is because as process technology downscales, errors are more frequent and also tend to affect multi-
ple bits. For SRAM memories and caches, latency is a limiting factor and ECCs have to provide low decod-
ing times that can in most cases be only achieved with the use of a parallel decoder. One important issue
with parallel decoders is that they typically require large circuit area to be implemented. One type of
ECCs that has been explored for memory protection is Difference Set (DS) codes. In this research note,
an optimized parallel decoding scheme for DS codes is presented and evaluated. The results show that
the circuit area and the decoding delay are reduced compared to a traditional implementation. In addi-
tion, the new scheme enables a reduction in the number of parity check bits thus reducing the memory

Keywords:
Difference-set codes
Error correction codes
Majority logic decoding

Memory size.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Error Correction Codes (ECCs) are an attractive option to protect
memories and caches from errors. This is due to a number of rea-
sons. For example, as technology scales the percentage of radiation
induced soft errors that affect multiple bits increases [1]. Another
example is that in order to reduce power consumption, aggressive
voltage reductions are proposed. These reductions increase the
error rates and therefore advanced ECCs are needed to make sure
that those errors do not compromise the integrity of the data
stored in the cache or memory [2].

One key requirement for caches and SRAM memories is speed.
Therefore, when used, advanced ECCs should minimize the
impact on delay. The most complex task of an ECC is in most
cases the decoding phase [3]. For many codes, decoding can be
done serially or in parallel [4]. The serial decoder is typically
much simpler and slower as it requires multiple cycles while
the parallel decoder is faster but requires much more hardware
resources. In the case of caches or high speed memories a parallel
decoder can be an interesting option to meet the delay require-
ments. As an example, a parallel decoder for Double Error Correc-
tion (DEC) Bose-Chaudhuri-Hocquenghem (BCH) codes was

* Corresponding author. Tel.: +34 914521100; fax: +34 914521110.
E-mail addresses: mdemirci@aselsan.com.tr (M. Demirci), previrie@nebrija.es
(P. Reviriego), jmaestro@nebrija.es (J.A. Maestro).

http://dx.doi.org/10.1016/j.microrel.2014.06.017
0026-2714/© 2014 Elsevier Ltd. All rights reserved.

proposed in [5]. The results show that low delay can be achieved
at the cost of increased circuit area. Parallel decoders have also
been explored for Orthogonal Latin Squares (OLS) codes to imple-
ment low power caches [6]. These codes are one-step majority
logic decodable which enables fast and parallel decoding [4].
However, OLS codes require more parity check bits than other
codes that can correct the same number of errors [7]. Other
one-step majority logic decodable codes that have been explored
for memory protection are a class of Euclidean Geometry (EG)
codes. The implementation of a parallel decoder for EG codes
was studied in [8] in the context of nano-scale memories and
some optimizations were presented in [9]. Doubly Transitive
Invariant (DTI) codes have also been recently considered to
protect memories [3].

Difference Set (DS) codes are also one-step majority logic deco-
dable and its use for memory protection has also been studied for
example in [10]. Parallel decoders can also be directly imple-
mented for DS codes. However, the properties and parameters of
the DS codes enable optimizations of the parallel decoder imple-
mentation. In this research note, an optimized parallel decoding
scheme for DS codes is presented and evaluated for FPGA imple-
mentations. The results show that significant reductions in decoder
area and delay can be obtained. The scheme also provides a small
reduction in the number of parity check bits. Therefore the pro-
posed scheme can be useful for practical implementations of DS
codes in high speed memories and caches.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.microrel.2014.06.017&domain=pdf
http://dx.doi.org/10.1016/j.microrel.2014.06.017
mailto:mdemirci@aselsan.com.tr
mailto:previrie@nebrija.es
mailto:jmaestro@nebrija.es
http://dx.doi.org/10.1016/j.microrel.2014.06.017
http://www.sciencedirect.com/science/journal/00262714
http://www.elsevier.com/locate/microrel

2646 M. Demirci et al./ Microelectronics Reliability 54 (2014) 2645-2648

The rest of this research note is structured as follows, Section 2
presents a short overview of DS codes focusing on the decoder
implementation and compares the DS codes with other codes that
are also one step majority logic decodable. Then the proposed par-
allel decoder optimization is discussed in Section 3 and evaluated
for FPGA implementations in Section 4. Finally the conclusions are
summarized in Section 5.

2. Difference set codes

Difference Set (DS) codes are based on the concept of perfect
difference set and have a complex mathematical construction [4].
They were proposed by Rudolph [11] and Weldon [12] and can
be decoded with one step majority logic. Therefore, the decoder
is easily implemented in parallel. The parameters of the DS codes
for data block sizes smaller than 1K bits are shown in Table 1.
where k refers to the number of data bits and n to the total number
of bits after encoding. It can be observed that the choices of block
sizes and error correction capabilities are limited. This is the main
disadvantage of DS codes. Another important point is that the
block sizes are not a power of two. This however can be easily
achieved by shortening the codes to the desired block length [4].

The parameters of other majority logic decodable error correc-
tion codes that are similar in terms of data block size and error cor-
rection capabilities to DS codes are given in Table 2. The optimized
DS code that will be introduced in the next section is also included
in the Table. From the table, it can be observed that DS codes have
larger code rates (k/n) than EG-LDPC (Euclidian Geometry-LDPC),
DTI (Doubly Transitive Invariant) and especially Orthogonal Latin
Square (OLS) codes. For OLS codes, the number of parity check bits
is equal to the number of data bits. Therefore, OLS codes require a
much larger memory overhead for data widths greater than
16 bits. The larger code rates make DS codes attractive in terms
of memory overhead.

As mentioned before, DS codes are one step majority logic dec-
odable. This means that each bit can be decoded by taking the
majority vote of J parity equations. A serial implementation of
the decoder for the (21, 11) DS code is shown in Fig. 1. The code-
word is placed on a shift register and at each clock cycle the con-
tents are shifted to the right and the bit in position Gy is
decoded by taking the majority vote of equations wy to w,. The
Majority Logic (ML) equations are such that any bit except the
bit being decoded participates in exactly one ML equation. The
bit being decoded participates in all | equations. This ensures that
the bit will be decoded correctly when the number of errors is
equal or smaller than J/2. For example, when a bit is in error and
there are other | — 1 errors, the worst case for the majority vote
will be J — [+1 which is a majority when [<J/2. Conversely if a
bit is correct and there are [errors the bit will not be miscorrected
when [< J/2. Therefore as long as the number of errors is equal to
or smaller than J/2 the code can correct the errors.

As the decoding for each bit is independent, a parallel decoder
can be implemented in a direct way by replicating the majority
voter and ML equations for each bit. In fact, since the ML equations
are obtained by shifting, many of them appear in different bits and
in total only n ML equations are needed for a parallel decoder as
noted in [9] for EG codes. For example, for the parallel decoder

Table 1
Difference-Set codes parameters.

n k Correctable errors Majority logic equations (J)
21 11 2 5
73 45 4 9

273 191 8 17

version of the serial decoder shown in Fig. 1, the number of ML
equations would be 21, and also 21 ML voters and 21 correction
gates are needed. In general, for a DS code the direct parallel imple-
mentation of the decoder requires n ML equations, n J-inputs
majority voters and n correction gates.

3. Optimized parallel decoders

For DS codes, the number of ML equations is always odd [4].
Therefore the codes can correct exactly (J — 1)/2 errors. For exam-
ple, for the (21, 11) code J = 5 and it can correct two errors. This is
different from EG codes where the number of ML equations is even
[8]. When a serial decoder is implemented, the odd number of ML
equations can be used to detect some errors that cannot be cor-
rected [13]. For example, for the (21, 11) code, the majority voter
can be changed to a voter that requires majority of four, this
ensures that three errors do not cause miss-corrections. Then the
uncorrected errors can be detected by performing some additional
iterations in the serial decoder. For a parallel decoder, delay is the
critical parameter and performing additional error detection would
increase it. Compared to serial decoder, that corrects t errors and
detects t+ 1 errors, there is a trade-off between delay and error
detection. Parallel decoder needs n times less clock cycles than
serial decoder and corrects t errors, but cannot detect t + 1 errors
as original serial decoder does. Therefore, instead of enhancing
error detection, the odd number of MLD equations can be used to
simplify the parallel decoder. This is explained in the following.

A possible modification is to remove one entry from all the
majority voters so that the number of majority logic equations
for each bit is effectively reduced to J — 1. For example, for the
(21, 11) code four equations would be used so that still two errors
can be corrected. This simplifies the majority voters (as they have
less inputs) and also enables reductions in the number of overall
equations and parity check bits. To explain in detail the modifica-
tion, an example will be used. Consider again the (21, 11) DS code
whose serial decoder is shown in Fig. 1. Assuming a systematic
encoder, the last bits (C;; to Cy) will be parity check bits. To reduce
the number of inputs to the majority voters, one option is to
remove the equations used to decode Cpo (W to wy in Fig. 1). This
will remove | equations. Since each bit participates in exactly one
of those equations except for bit C;o which participates in all, the
reduction in the number of inputs to the voter is achieved. In addi-
tion, parity check bit Gy is no longer needed as the equations in
which it participated have been removed. This means that bit Cyg
can also be removed. To illustrate the scheme, the parallel decod-
ing for bit Gy is shown in Figs. 2 and 3 for a traditional decoder and
the modified decoder respectively. The procedure described can be
applied to a general DS code. In that case the number of inputs to
the voter is reduced by one, the number of equations by J and the
number of parity check bits by one. In the following, the modifica-
tion will be named Reduced Majority Logic (RML).

The amount of hardware needed for the direct and optimized
parallel decoders is summarized in Table 3. It can be observed that
the proposed RML scheme reduces the implementation cost. The
reductions compared to a direct implementation will be larger
when n is small. For example, for the (21, 11) code one parity check
bit is a 10% reduction and J = 5 equations is more than a 20% reduc-
tion. On the other hand, for the (273, 191) code, one parity check
bit is less than a 2% reduction and J = 33 equations is slightly more
than a 3% reduction. Therefore, the benefits of the proposed
scheme are expected to be larger for smaller block sizes. In the next
section a detailed evaluation of the proposed parallel decoders is
presented based on their HDL implementations and mapping to
an FPGA. The price paid to obtain this reduction is that the pro-
posed decoders cannot detect t+ 1 errors as serial decoders [13].

Download English Version:

https://daneshyari.com/en/article/546819

Download Persian Version:

https://daneshyari.com/article/546819

Daneshyari.com

https://daneshyari.com/en/article/546819
https://daneshyari.com/article/546819
https://daneshyari.com

