Accepted Manuscript

Simulation and experimental research on the parameter distribution of low-pressure Ar/O2 inductivly coupled plasma

Junlin Chen, Haojun Xu, Xiaolong Wei, HanYang Lv, Zhijie Song, Zenghui Chen

S0042-207X(17)30661-9

DOI: 10.1016/j.vacuum.2017.08.029

Reference: VAC 7555

PII:


To appear in: Vacuum

Received Date: 24 May 2017

Revised Date: 26 August 2017 Accepted Date: 26 August 2017

Please cite this article as: Chen J, Xu H, Wei X, Lv H, Song Z, Chen Z, Simulation and experimental research on the parameter distribution of low-pressure Ar/O₂ inductivly coupled plasma, Vacuum (2017), doi: 10.1016/j.vacuum.2017.08.029.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Simulation and experimental research on the parameter distribution of

low-pressure Ar/O₂ inductivly coupled plasma

Junlin Chen¹, Haojun Xu¹, Xiaolong Wei¹, Han Yang Lv¹, Zhijie Song¹, Zenghui Chen¹

¹Plasma Dynamic Laboratory, Air Force Engineering University, Xi'an 710038, China

Abstract: Adding electronegative gas to the inert gas is an important means of adjusting the

plasma parameter distribution. In this paper, a fluid model of the Ar/O₂ inductivly coupled plasma

(ICP) is used to investigate the parameter distribution, while the electron energy distribution

function (EEDF) and the transport coefficients are obtained by the Boltzmann equation solver

module to improve the accuracy. The spatial-temporal evolution of the electron density and the

electron temperature of the ICP are obtained and the influence of the discharge power and the

oxygen mole ratio on the distribution of the ICP parameters is compared. Additionally, the

physical mechanism is researched using the diffusion-transport theory of the plasma. In order to

verify the reliability of the model results, an experiment is carried out to diagnose the discharge

parameters. The results of the simulation and the experiment are performed for different power

and oxygen mole ratios and a good qualitative and numerical agreement is obtained, indicating

that the inclusion of the simulation results in a high accuracy.

Keywords: Ar/O2 inductively coupled plasma; Fluid model; Boltzmann equation module;

parameter distribution

PACS: 52.25. - b, 52.40.Db

1. Introduction

Inductivly coupled plasma (ICP) is a stable and uniform high-density plasma source with low

radio-frequency (RF) power and discharge pressure [1], a simple device structure, and parameters

that are easy to adjust [2]. Thus, ICP has a great potential application in reducing the

electromagnetic scattering characteristics of the inlet and radar cabin of stealth aircraft [3,4,5].

Adding electronegative gas to the inert gas is an important means of adjusting the plasma

parameter distribution; therefore, the study of the discharge characteristics of the ICP at different

argon-oxygen mixing ratios is of important significance [6].

For an analysis of the electromagnetic scattering properties of a target by ICP, the dielectric

Download English Version:

https://daneshyari.com/en/article/5468222

Download Persian Version:

https://daneshyari.com/article/5468222

<u>Daneshyari.com</u>