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a b s t r a c t

In this paper a hardware architecture of scalar multiplication based on Montgomery ladder algorithm for
binary elliptic curve cryptography is presented. In the proposed architecture, the point addition and
point doubling are performed in parallel by only three pipelined digit-serial finite field multipliers. The
structure of multiplier with a low critical path delay is based on a parallel and independent computation
of multiplication by power of the variable polynomial. The inversion operation is implemented by using
an efficient architecture of Itoh–Tsujii inversion algorithm. To maximize the performance of the scalar
multiplier, a clock switch block is used to manage the clock signal so that the circuit operates at its
maximum frequency at different steps of the Montgomery ladder scalar multiplication algorithm.
Implementation results of the proposed architecture on Virtex-5 XC5VLX110FPGA show that the
execution time of the scalar multiplication for binary finite fields GF(2163) and GF(2233) are 5.08 ms and
6.84 ms respectively, which are better than those of other similar works.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The cryptosystems, which are used for encryption and decryption
of data, are divided into two main categories of symmetric key and
asymmetric key cryptosystems. The symmetric key schemes are fast
with low area. Though, there are several drawbacks in these algo-
rithms, including the problems of key distribution, key exchange, key
management, and incompleteness. The asymmetric key cryptosystems
or public key cryptosystems (PKC), without having these drawbacks
can effectively provide the authentication and non-repudiating
security services [1]. The elliptic curve cryptosystem (ECC) which is
first proposed by Neil Koblitz [2] and Victor Miller [3] independently is
a public key scheme in which elliptic curves over finite fields (finite
Galois fields (GF)) are applied. It is considered in several standards
such as NIST [4], IEEE P1363 [5] and ANSI [6]. Two important appli-
cations of ECC are elliptic curve digital signature algorithm (ECDSA)
and elliptic curve Diffie–Hellman key exchange protocol. It provides a
security level equal to other public key cryptosystems such as RSA,
with a considerable smaller key size [7]. The small key size, low area
consumption, and fast implementation make ECC one of the best
choices for hardware implementation.

ECC has different practical applications in public key cryptography,
e.g., in government communications, banking applications, mobile
security, digital right management and other security applications. In
many ongoing internet and network applications such as SSL (Secure
Sockets Layer), TLS (Transport Layer Security) and IPsec protocols
(which are commonly used today in over-the-web transactions and
secure document transfers), high-speed implementation of ECC is an
important factor. It could be either the only solution to reach an
acceptable performance, or even the only feasible solution for time
critical applications, such as in network servers where millions of
heterogeneous client devices need to be connected [8,9]. In addition,
hardware-based implementations can provide significant security
improvements by protecting secret keys and other parameters over
software solutions [10]. In ECC, main operations such as key genera-
tion and exchange, data encryption, and data decryption depend on
the operation of scalar multiplication or point multiplication. Scalar
multiplication is performed by using finite field operations such as
field multiplication, field inversion, field squaring, and field addition.
Efficient implementation of these operations can lead to high-
performance and high-speed cryptosystems.

Different FPGA based hardware implementations of the scalar
multiplication on binary elliptic curve have been reported [11–54]. In
[11] using parallel structures in elliptic curve cryptography is dis-
cussed, and the inversion operation based on Itoh–Tsujii inversion
algorithm is implemented. In [12] a modification on Karatsuba–Ofman
algorithm for multiplication operation is proposed. Also a hardware
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implementation of ECC based on Montgomery algorithm in projective
coordinates is proposed, and inversion operation is implemented
based on the extended Euclidean algorithm (EEA). The architecture
proposed in [14] uses an optimized bit-parallel squarer, a digit-serial
multiplier, and two programmable processors. In [16] high-
performance point multiplication architectures based on digit-serial
finite field multiplication and division have been proposed. In [20] for
ECC implementation a new high-speed pipelined application-specific
instruction set processor (ASIP) is presented. Three complex instruc-
tions, instead of many simple instructions, are used to reduce the
latency. In addition, a new combined algorithm was developed to
perform both point doubling and point addition. In [21] an archi-
tecture based on a modified Lopez–Dahab elliptic curve point multi-
plication algorithm is proposed. It uses Gaussian normal basis (GNB)
for GF(2163) field arithmetic. In [26] to achieve an architectural and
timing improvement, the critical path of the Lopez–Dahab scalar
multiplication architecture is reorganized and reordered. The logic
structures are implemented in parallel and operations in the critical
path are diverted into the noncritical paths. In [28] an elliptic curve
processor with three finite field RISC cores is used. A controller is used
to achieve instruction-level parallelism (ILP) for elliptic curve point
multiplication. Some instructions are introduced to decrease clock
cycles. The interconnection among the three finite field cores and the
controller is obtained based on the analysis of both data dependency
and critical path. In [31] an architecture based on amodified version of
the sliding window scalar multiplication algorithm is proposed. To
speed-up the scalar multiplication the point doubling and adding
operations are merged into a single step. It decreases the critical path
delay at the expense of a larger Look-Up Table (LUT). The proposed
elliptic curve arithmetic unit in [34] is based on a one-dimensional
systolic architectural realization of a modified multiplication-inversion
algorithm. Through an appropriate initialization it uses the structure of
inversion to perform multiplication operation too. In [41] a theoretical
model is used to approximate the delay of different field operations in
an elliptic curve scalar multiplication architecture implemented on k-
input LUT-based FPGA. In this work, a suitable scheduling is illustrated
for performing point addition and doubling in a pipelined data path of
the architecture. In [43] a parallel hardware processor is presented to
compute elliptic curve scalar multiplication in polynomial basis
representation. The processor uses a modular arithmetic logic unit
(MALU) which consists of two multiplication units, one addition unit,
and one squaring unit that operate in parallel.

In this work, a hardware architecture of scalar multiplication
based on Montgomery ladder algorithm for binary elliptic curve
cryptography is presented. The main contributions in the pre-
sented work are as follows:

1. For the scheduling of the field operations in the point addition
and point doubling computation, a suitable parallelization of
the operations is employed. By this, a fully parallel design for
field multiplication operations is achieved that reduces the
number of clock cycles. The scalar multiplication is imple-
mented by using only three field multipliers which are shared in
loop iterations and coordinate conversion part of the Mon-
tgomery ladder algorithm. This reduces hardware consumption.
Also in the loop iterations, utilization factor of two of the
multipliers is 100% and of the third multiplier is 90%. Using this
parallelization, the execution time of each loop iteration is equal
to 2TM, where TM is the execution time of one field multination.
This could lead to an improvement in speed. The optimization
efforts in other works have been also on reducing the execution
time and increasing utilization factor of the field multiplier in
the scalar multiplication. For example in [46] for four cases of
(BECs M¼4, H¼0), (BECs M¼3, H¼2), (BHCs, M¼3, H¼0) and
(BHCs, M¼2, H¼1) the multipliers have utilization factor of
83.33%, 90%, 78% and 100% respectively. Here M is the number

of single digit-level multipliers and H is the number of hybrid-
double multipliers. Also in [28] based on instruction-level
parallelism, the three used field multipliers have 50% utilization
factor in loop iteration computations. In [14,18,20,22,34,38,41]
the execution times for one pass in the scalar multiplication
loop is equal to 6TM. In [12,33,35,43] this time is equals 4TM. In
[49] by using four field multipliers, the execution time for one
loop in the scalar multiplication is equal to 2TM.

2. A new hardware structure of the polynomial basis multiplier is
introduced. The proposed field multiplier has digit-serial struc-
ture based on parallel and independent computation of multi-
plication by power of the variable polynomial with embedded
reduction operation. The multiplier is pipelined to decrease
critical path delay. The main improvement in the proposed
digit-serial multiplier is its parallel and independent computa-
tion of multiplication by powers of the polynomial variable. It
provides a regular and high-speed structure with low critical
path delay. In [12,33,35,38,41,47] the field multiplication is
based on bit-parallel Karatsuba multiplier. Also in [48] a digit-
serial Karatsuba multiplier is used. The multipliers in [45,46,51]
are digit-serial Gaussian normal basis. The hardware utilization
and critical path delay in the proposed structure is reasonable
and comparable with other polynomial basis and normal basis
digit-serial multipliers.

3. In coordinate conversion part of the Montgomery ladder algo-
rithm one inversion and 11 field multipliers are needed. A high-
speed architecture for the field inversion based on the Itoh–
Tsujii algorithm is implemented. In the architecture, a novel
k-time squarer block with tree structure is employed. The
proposed circuit has a sequential architecture with low critical
path delay and low area when compared with other Itoh–Tsujii
inversion implementations. The critical path of the circuit is
broken to finer path using several registers. Also to reduce the
number of clock cycles in the coordinate conversion part, two
multiplication operations are concurrently performed with
calculation of inversion operation. In [10,19,21,26] the coordi-
nate conversion part is implemented by 3 inversion and 5 multi-
plication operations.

4. In the Montgomery ladder algorithm the execution of loop
iterations, compared to coordinate conversion part, needs to
much more clock cycles. In the proposed design of scalar mul-
tiplication, by using a clock switch the circuit is able to operate
in maximum frequency in both loop iterations and coordinate
conversion part.

The rest of the paper is organized as follows: In Section 2, a brief
introduction of elliptic curves over a finite field is provided. Section 3
describes the proposed structure of scalar multiplication on binary
elliptic curve. The structures of field operations and clock switch cir-
cuit are presented in Sections 4 and 5 respectively. Section 6 provides
a comparison between this work and other previously related works.
Section 7 concludes the paper.

2. Elliptic curve mathematics over GF(2m)

An elliptic curve E over a field F can be given by the so-called
Weierstrass equation as

E:y2þa1xyþa3y¼ x3þa2x2þa4xþa6 ð1Þ
where a1; a2; a3; a4 and a6 are in F . The discriminant of E is given by
Δ¼ �d22d8�8d34�27d26þ9d2d4d6, where d2 ¼ a21þ4a2, d4 ¼ 2a4þ
a1a3, d6 ¼ a23þ4a6, and d8 ¼ a21a6þ4a2a6�a1a3a4þ a2a23�a24. Δa
0; since the elliptic curve E is nonsingular. The set of affine points
ðx; yÞ satisfying the curve equation with the point at infinity
denoted by O construct an abelian group [7].
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