Microelectronics Journal 51 (2016) 15-29

journal homepage: www.elsevier.com/locate/mejo

Contents lists available at ScienceDirect

MICROELECTRONICS
JOURNAL

Microelectronics Journal

Design of a compact reversible fault tolerant division circuit

—

\!} CrossMark

Hafiz Md. Hasan Babu **, Md. Solaiman Mia >*

2 Department of Mechatronics Engineering, University of Dhaka, Dhaka-1000, Bangladesh
b Department of Computer Science and Engineering, University of Dhaka, Dhaka 1000, Bangladesh

ARTICLE INFO

ABSTRACT

Article history:

Received 24 May 2014
Received in revised form

27 September 2015

Accepted 24 January 2016
Available online 1 March 2016

Keywords:
Reversible logic
Fault tolerant
Reversible divider
Quantum cost
Delay

In this paper, we propose an n-bit reversible fault tolerant binary division circuit, where n is the number
of bits of dividend and divisor. We present a new algorithm for division operation with the optimum time
complexity in the design of dividers. The proposed division method consists of four steps: Firstly, it
considers floating-point data and rounding. Secondly, it performs correctly rounded division. Thirdly, it
performs correct rounding from one sided approximations. Finally, it calculates the result of the division
operation. The proposed design of the divider circuit shows that it is composed of reversible fault tol-
erant multiplexers, parallel-in—-parallel out (PIPO) left shift registers, D-Latch, rounding and normal-
ization registers and parallel adder. The proposed divisor register and the parallel adder have the
minimum quantum cost with respect to the existing ones. Fredkin gates and Feynman double gates are
also used to form the divider circuit. Finally, we present an algorithm to construct a compact n-bit
reversible fault tolerant binary division circuit. In this paper, a new algorithm has also been proposed to
reduce the number of steps required for performing division operation. Our circuit performs better than
the existing approaches considering all the efficiency parameters of reversible logic design which
includes number of gates, constant inputs, garbage outputs, quantum cost and delay of the circuit, e.g.,
for a 256-bit binary division circuit, the proposed reversible fault tolerant binary division circuit
improves 27.75% on the number of gates, 0.03% on garbage outputs, 11.04% on quantum cost, 8.94% on
constant inputs and 23.50% on delay with respect to the best known existing divider circuit. We also
simulate the proposed n-bit reversible fault tolerant binary division circuit using Microwind DSCH

3 which shows the correctness of the circuit.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Energy consumption is a vital issue in modern VLSI designs.
Though the improvement in the higher-level integration and the
advancement of new fabrication processes have significantly
reduced the heat loss over the last decades, physical limit exists in
the reduction of heat. It has been proved that for irreversible logic
computations, each bit of information lost generates kTIn2 joules
of heat energy, where k is Boltzmann's constant of 1.38 x 1022 J/K
and T is the absolute temperature at which computation is per-
formed [1]. Bennett showed that kTIn2 energy dissipation would
not occur if the computation was carried out in a reversible
manner [2]. Reversible logic is a potential area of study regarding
further technological innovations. The major application of rever-
sible logic is in quantum computation as quantum circuits must be
reversible [3]. It has been widely applied in various research areas
such as optical computing [4], ultra low power CMOS design [5],

* Corresponding authors. Tel.: +880 2 963 4854; fax: +880 2 861 5583.
E-mail address: hafizbabu@du.ac.bd (H.Md.H. Babu).

http://dx.doi.org/10.1016/j.mejo.2016.01.003
0026-2692/© 2016 Elsevier Ltd. All rights reserved.

DNA computing, quantum computing, thermodynamic technology,
bioinformatics and nanotechnology [6].

Parity checking is one of the widely used error detection
mechanisms in digital logic and data communication systems. This
is because most of the arithmetic functions is not parity preser-
ving. If the parity of the input data is maintained throughout the
computation, no intermediate checking would be required [23]. A
sufficient requirement for parity preservation of a reversible cir-
cuit is that each gate be parity preserving [23]. Thus, we need
parity preserving reversible logic gate to construct parity preser-
ving reversible circuits.

Division is the most difficult operation in the computer arith-
metic [9,12]. Nowadays, people use a hardware module divider to
implement the division algorithm. Conventionally sequential cir-
cuits are used to implement the divider. The division circuit can be
used in the arithmetic unit of a processor. In this paper, we pro-
pose a fault tolerant reversible division circuit. We demonstrate
that the proposed divider is better than the existing ones in terms
of number of gates, constant inputs, garbage outputs, quantum
cost and delay of the circuit.

www.sciencedirect.com/science/journal/00262692
www.elsevier.com/locate/mejo
http://dx.doi.org/10.1016/j.mejo.2016.01.003
http://dx.doi.org/10.1016/j.mejo.2016.01.003
http://dx.doi.org/10.1016/j.mejo.2016.01.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mejo.2016.01.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mejo.2016.01.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mejo.2016.01.003&domain=pdf
mailto:hafizbabu@du.ac.bd
http://dx.doi.org/10.1016/j.mejo.2016.01.003

16 H.Md.H. Babu, Md.S. Mia / Microelectronics Journal 51 (2016) 15-29

2. Background study of existing division circuits

In arithmetic and algebraic computation, the basic operations
are addition, subtraction, multiplication and division. It is a fun-
damental problem to find efficient algorithms for division, as it
seems to be the most difficult of these basic operations. The
division operation has been regarded as a significant verification
challenge. This operation is usually implemented as a sequence of
basic operations rather than a dedicated logic circuit [36]. As a
result, it exhibits both an exceptionally wide array of intricate
corner cases and an immense state space, challenging both
simulation and formal methods.

2.1. Existing division algorithms

Designers of processors with enhanced arithmetic and logic
unit (ALU) are always on a look out for algorithms for performing
basic operations one of them being division. The algorithm should
be such that it involves processes requiring compact hardware
while satisfying efficiency constraints. In this section, we briefly
discuss about the existing division algorithms with their
properties.

2.1.1. Binary floating-point division algorithm [7]

This algorithm deals with the implementation of low latency
software for binary floating-point division with correct rounding
to nearest. The approach presented in [7] targets a VLIW integer
processor of the ST200 family and is based on fast and accurate
programs for evaluating some particular bivariate polynomials.
With the ST200 compiler and compared to previous imple-
mentations, the speed-up observed with this approach is by a
factor of almost 1.8.

But the method in [7] has some critical problems. This method
is good for binary32 format and for a particular 32-bit architecture.
But when optimizing division codes presented in [7] for other
processors and/or other floating-point formats (like binary64,
binary128, or smaller formats used in computer graphics), the
performance of this method will reduce because of gradual
underflow [8]. Moreover the division code in [7] should definitely
be extended in order to support subnormal numbers while
keeping the latency as low as possible. Finally, all the rounding
attributes that are prescribed in [13] should be implemented.

2.1.2. Floating-point division algorithm [10]

This method presents the AMD-K7 IEEE 754 and x 87 com-
pliant floating-point division. Highly accurate initial approxima-
tions and a high performance shared floating point multiplier
assist in achieving low division latencies at high operating fre-
quencies. This algorithm also describes a novel time-sharing
technique which allows independent floating point multi-
plication operations to proceed while division is in progress.

But with this method, the extra multiplier hardware required to
support division that actually impacted total area included flip-
flops to store intermediate results, an incremental and the state
machine. The division algorithm presented in [10] accounts for
about 10% of the total area of the multiplier unit.

2.1.3. Floating-point division using a Taylor-series expansion algo-
rithm [11]

This method presents the implementation of a fused floating
point divide unit based on a Taylor-series expansion algorithm
[11]. By this algorithm, the resulting arithmetic unit also exhibits
high throughput and moderate latency as compared with other
floating-point unit (FPU) implementations of leading archi-
tectures. Moreover, this algorithm achieves fast computation by
using parallel powering units such as squaring and cubing units,

which compute the higher-order terms significantly faster than
traditional multipliers with a relatively small hardware overhead.

Even though the Taylor-series expansion algorithm with pow-
ering units exhibits the highest performance among multiplicative
algorithms, it consumes a large area because the architecture
shown in [11] consists of four multipliers, which is not suitable for
area-critical applications.

2.2. Existing designs of reversible division circuits

Division is the most difficult operation in the computer arith-
metic. Now-a-days people use a hardware module-divider to
implement the division algorithm. Conventionally sequential cir-
cuits are used to implement the divider. In this section, we
describe some existing divider circuits with their properties.

2.2.1. Fault tolerant reversible divider [24]

Dastan et al. proposed fault tolerant design of a reversible
divider [24] in 2011. In this design, some reversible fault tolerant
components like reversible fault tolerant parallel adder, reversible
fault tolerant shift register and reversible fault tolerant n-bit reg-
ister have been proposed.

Even though the design of [24] illustrated with the first design
of fault tolerant reversible divider, the design required more cir-
cuitry compared to later designs in the literature. Also the design
can handle only positive integers.

2.2.2. Reversible signed divider with overflow checking capability [30]

In 2012, Dastan et al. proposed another fault tolerant design of
the reversible divider [30]. This reversible division circuit is a
signed divider and has an overflow checking capability. This
division circuit is the first reversible signed divider with overflow
checking capability.

The design of [30] can handle signed numbers, but this design
is not fault tolerant.

2.2.3. Reversible floating point divider [31]

Jamal et al. proposed two approaches for constructing a
reversible divider [31] in 2013. A conventional division array was
used in the first approach and a high speed division array was
used in the second approach. Both of the approaches can handle
floating point numbers.

But both of the approaches designed using non-fault tolerant
reversible logic.

None of the existing reversible dividers [24,30,31] can have
both the floating point numbers and the fault tolerant features at
the same time.

3. Proposed division method

In this section, we show a new method for binary floating-
point division. In Sections 3.1 and 3.2, we propose a new algorithm
for binary floating-point division and present a comparison of the
proposed algorithm with others in terms of time complexity,
respectively.

Although floating-point (FP) divisions are less frequent in
applications than other basic arithmetic operations, reducing their
latency is often an issue [37]. Since low latency implementations
may typically be obtained by expressing and exploiting instruction
parallelism, intrinsically parallel algorithms tend to be favored. In
this paper, we propose an algorithm to get the desired result
which is described below.

In the first step, working with floating-point numbers requires
some understanding of the internal representation of data.
Researchers must be aware of the finite precision issues. For

Download English Version:

https://daneshyari.com/en/article/546839

Download Persian Version:

https://daneshyari.com/article/546839

Daneshyari.com

https://daneshyari.com/en/article/546839
https://daneshyari.com/article/546839
https://daneshyari.com

