Accepted Manuscript

Effect of vacuum re-melting on the solid particles erosion behavior of Ni60-NiCrMoY composite coatings prepared by plasma spraying

Z.H. Wen, Y. Bai, J.F. Yang, J. Huang

PII: S0042-207X(16)30599-1

DOI: 10.1016/j.vacuum.2016.09.020

Reference: VAC 7141

To appear in: Vacuum

Received Date: 27 June 2016
Revised Date: 25 August 2016

Accepted Date: 24 September 2016

Please cite this article as: Wen ZH, Bai Y, Yang JF, Huang J, Effect of vacuum re-melting on the solid particles erosion behavior of Ni60-NiCrMoY composite coatings prepared by plasma spraying, *Vaccum* (2016), doi: 10.1016/j.vacuum.2016.09.020.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Effect of vacuum re-melting on the solid particles erosion behavior of Ni60-NiCrMoY composite coatings prepared by plasma spraying

Z.H. Wen^{a, b}, Y. Bai^{*, a}, J.F. Yang^a, J. Huang^b

^a State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong

University, Xi'an 710049, P.R. China

^b School of Materials Science and Engineering, Nanchang Hangkong University,

Nanchang 330063, P.R. China

* E-mail address: byxjtu@mail.xjtu.edu.cn

Tel.: +86 29 82668614

Fax: +86 29 82663453

Abstract: Ni60-NiCrMoY composite coatings prepared by supersonic atmospheric plasma spraying were subjected to vacuum re-melting. The effect of vacuum re-melting on erosion behavior of the as-sprayed coatings was examined at various impact angles. The erosion mechanism of the as-sprayed and re-melted coatings were also investigated. At low impact angles, metal removal of coatings and substrate was controlled by microcutting. The erosion resistance of the coatings was higher than that of substrate, and the re-melted coatings exhibited best erosion resistance. With increasing the impact angle, the erosion rate of substrate first increased and then decreased, while that of the coatings increased gradually. The highest erosion rate of substrate occurred at an impact angle of 45°, which was lower than that of the as-sprayed coatings and higher than that of the re-melted coatings. Vacuum re-melting

Download English Version:

https://daneshyari.com/en/article/5468465

Download Persian Version:

https://daneshyari.com/article/5468465

<u>Daneshyari.com</u>