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a b s t r a c t

In Accelerated Life Time Modeling, the goal is to estimate the activation energy and failure time distribu-
tion. Existing methods assume data sets come from just one mechanism of failure. However, in many
applications, more failure modes can be involved and few data are available; hence, we have to develop
a method to identify the number of failure modes and assign observations to the appropriate failure
mode. We developed a methodology based on Finite Mixture models and Bayesian Model selection to
identify multiple failure modes. The approach provides the probability for each observation being asso-
ciated with a certain failure mode, and provides good estimates for the activation energy of each mode.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In Accelerated Life Time Modeling (ALTM), we investigate the
Life Time (LT) distribution of a given product and how LT changes
with a stress factor. Temperature is an example of such a stress fac-
tor and, in most cases, increasing the temperature results in an in-
crease in the failure rate. In ALTM, the LT follows a certain
distribution with parameters changing with temperature. For
example, the failure time can follow a Weibull, Lognormal, or Gam-
ma distribution. These distributions have two parameters and one
of the parameters, the scale parameter, changes with temperature
according to the Arrhenius law

scale ¼ Ae
Ea

kBT ; ð1Þ

where kB is Boltzmann’s constant, T is temperature (stress factor),
and Ea is the activation energy (higher activation energies corre-
spond to failure mechanisms with stronger temperature
dependence).

The activation energy can be estimated using Proportional Haz-
ard Models [1,2] or the Maximum Likelihood Method (MLE) [3]. In
this article we use the MLE method. Eq. (1) assumes that we have
just one failure mechanism with one value for the activation en-
ergy. However, in many cases units’ failures can be driven by
two or more mechanisms. For example, one failure mechanism
can be observed through device degradation (e.g. current drop,
resistance increase, etc.), while another mechanism can be associ-
ated with an abrupt change in a parameter (e.g. sudden appearance
of leakage or catastrophic burnout). For some units we observe fail-
ures (uncensored data) and in most cases we can assign a mecha-
nism of failure. For other units we do not observe failures through

the end of the test (censored data) or it is not easy to state what the
mechanism of failure is.

Multi-failure mode situations are sometimes handled by reli-
ability engineers by discarding the data for secondary failure
modes. However, by removing observations, we decrease the accu-
racy and increase the bias which can lead to the erroneous life time
distributions and activation energy estimates for the primary fail-
ure mode as well. Therefore, the ability to determine how many
different failure mechanisms are involved and, furthermore, the
ability to assign each unit to a mechanism of failure is extremely
important. It is needed for correctly estimating life time distribu-
tions and activation energies, making life time predictions, know-
ing which failure mode to attack through process changes first
and failure root cause analysis.

In the general case of multi-temperature accelerated life test
data where multiple failure mechanisms operate and the failure
times are possibly censored, we would like to know the answers
to the following:

(1) How many possible mechanisms of failure (groups) exist?
(2) For each observation: what is the probability of being from a

specific group?
(3) For each group: what is the best statistical distribution mod-

eling the data (for example, Normal, Lognormal, or
Weibull)?

(4) What are the estimates for the activation energy for each
failure mode?

There are methodologies [4] and software packages (Minitab,
Reliasoft) providing multimode reliability analysis with input from
the user on failure mode for each sample. However, there is not a
methodology which analyzes the data to determine the failure
mode for each individual device and provide activation energies
for all failure modes at once. In this work, we provide a methodol-
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ogy for answering to the above questions. In Section 2, we provide
the general theory about ALTM; in Section 3, we introduce the cur-
rent approach for ALTM and in Section 4, we introduce the pro-
posed model based on Finite Mixture Models. Finally, in
Section 5, we provide examples with synthetic data.

2. Accelerated life testing models

ALTM relates [1,5,6] the lifetime distribution to explanatory
variables E (temperature, pressure, voltage, etc.). The distribution
can be defined by the survival function. Let us assume that the
explanatory variable X is constant with time (constant stress)
and we will define Tx as the failure time when X = x. The survival
function is defined as

SxðtÞ ¼ PðTx P tÞ; t > 0; x 2 E; ð2Þ

and provides the probability for a unit to survive for a time equal or
greater than t when the stress factor has a value X = x.

A simple equation often used to relate how t changes with X is
given [6] by

SxðtÞ ¼ S0 rðxÞ � tf g; ð3Þ

where S0 is called the baseline survival function and does not de-
pend on x. For any fixed x, the value r(x) can be interpreted as the
acceleration constant of the survival function or the time scale. Typ-
ically, the survival times are assumed to be from some class of para-
metric distributions (Weibull, Lognormal, etc.).

A parametric model assumes that life times’ variation can fol-
low a certain distribution whose scale changes with the stressing
factor. For example, when assuming lifetime is changing according
to a Weibull distribution, this means that

PðT ¼ t j X ¼ xÞ ¼ k
s

t
s

� �k�1

e�ðt=sÞ
k
; ð4Þ

where the scale parameter changes with X. For example, when X is
the temperature it is assumed (Arrhenius model) that s changes
log-linearly with 1/X as shown in Eq. (1).

To estimate the unknown parameters various units are stressed
at fixed values of X producing a data set with failure times t1, t2, . . . ,
tn and stress conditions x1, x2,. . ., xn. For each unit we have a cen-
soring indicator ci assuming value of zero when the unit failed at
time ti and value of one when the unit was still working (censored
observation).

To estimate the parameters, various approaches can be used [2].
In our investigation, we focus on a parametric approach by assum-
ing that we know the distribution of life times. Then, for uncen-
sored observations, we have a probability density function

PðiÞ ¼ f ðti j hiÞ; ð5Þ

and for censored observations we have a survival function
P(i) = 1 � F(ti | hi), where F(ti | hi) is the cumulative distribution
function.

In Eq. (5), we have to estimate the unknown parameters

hi ¼ hiðxiÞ: ð6Þ

Given a dataset of n observations, we can estimate the parame-
ters using the Maximum-Likelihood method [3]. This means
maximizing

L ¼
Yn

i¼1

f ðti j hiÞ1�ci � ð1� Fðti j hiÞÞci : ð7Þ

The above methodology is quite easy to implement and soft-
ware is available. However, in some cases, the data set is more

complex and we have to develop a new method. In the next sec-
tion, we propose using Finite Mixture Models and Bayesian Model
selection.

3. Finite mixtures modeling

In some applications in the engineering field, several failure
mechanisms may be present. For example, some failures can be
driven by defects, contamination, etc., while other failures can be
driven by wear-out. Then, we would like to identify how many fail-
ure modes are present and find the failure distribution for each.
The Finite Mixture Models approach [7] is an obvious choice for
modeling multiple failure modes.

Finite Mixture Models (FMM) assume that each observation can
be from multiple groups that are mutually exclusive. The probabil-
ity of an observation can be expressed as

P ðfail time 6 tÞ ¼
XG

g¼1

PðgÞ � P ðfail time 6 t; gÞ: ð8Þ

Eq. (8) tells us that the probability of a part failing by a given
time t is the sum of the probabilities over all groups g = 1� � �G.
For each group g, we have a probability P(g) for the failure mecha-
nism to occur and a probability P(t; g) for having an observed fail-
ure time less than or equal to t. To fit the above model to the data,
we have to estimate P(g) and, for each group, we have to estimate
the unknown parameters: h = {h1, h2, . . ., hG,}.

In FMM we estimate P(g) and h using the MLE method. In most
cases the Likelihood is very complex and we search for the MLE
using the Expectation Maximization method [7]. The Expectation
Maximization (EM) method uses an iterative procedure for com-
puting the MLE for problems with incomplete data. In our case,
the incomplete data is the lack of an assignment of each observa-
tion to a particular group. The name EM highlights the two steps
performed in each iteration:

E-step: Given current estimates for P(g) and h, calculate the
probability P(t; g) of each observation being part of a group g.
M-step: Given P(t; g), calculate P(g) and h such as to maximize a
conditional likelihood.

For example, let us assume we investigate a mixture of two dis-
tributions and before step s we have initial estimates h1,s�1h2,s�1 for
their parameters, and P1,s�1 and P2,s�1 for the groups’ probabilities.

In the sth E-step we calculate the probability that an observa-
tion belongs to a group g using the formula

Psði; gÞ ¼ Pði j hg;s�1Þ � Pg;s�1

Pði j h1;s�1Þ � P1;s�1 þ Pði j h2;s�1Þ � P2;s�1

i ¼ 1;2; . . . ;n g ¼ 1;2 ð9Þ

where P(i | hg,s�1) � Pg,s�1 is the probability to have observation i
from group g and using the parameters h estimated in step s � 1.

The M-step requires [7] the maximization of the conditional
expectation of the likelihood of the parameters h given the data
D. For our data modeling this translates into new estimates for
group probabilities

Pg;s ¼
1
n

Xn

i¼1

Psði; gÞ: ð10Þ

The parameters hg;s�1 are estimated by solving the equations

XG

g¼1

Xn

i¼1

Pkði; gÞ# log Pði j hg;s�1Þ
#hg

¼ 0: ð11Þ

The EM procedure can be used recursively up to when there is
not much change in the estimated parameters. Ref. [7] provides
information on how to verify when convergence is achieved.

350 D. Nappa, G.I. Drandova / Microelectronics Reliability 54 (2014) 349–353



Download	English	Version:

https://daneshyari.com/en/article/546919

Download	Persian	Version:

https://daneshyari.com/article/546919

Daneshyari.com

https://daneshyari.com/en/article/546919
https://daneshyari.com/article/546919
https://daneshyari.com/

