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a  b  s  t  r  a  c  t

Reliable  prediction  of  machine  tool  chatter  is  an essential  problem  in efficiency-oriented  machine  tool
centers,  since  it requires  the  precise  characterization  of  the  dynamics  of the  machine-tool-workpiece
system  and  the  cutting  force  characteristics.  Due  to imperfect  measurements,  noise,  uncertain  and  varying
operational  conditions,  the  mathematical  models  provide  a deficient  representation  of  the  system.  This
leads to  the  need  for  the  adaptation  of  robust  stability  analysis  methods,  which  guarantee  stability  against
bounded  uncertainties  and  perturbations.  In this  paper,  a frequency-domain  approach  is presented  to
calculate  the  robust  stability  boundaries  of  chatter-free  machining  parameters  for  milling  operations.
The  idea  is  based  on  the  concept  of  the  stability  radius  and  structured  singular  values,  which  is combined
with  the  extended  multi  frequency  solution.  The  proposed  method  is  tested  in  a  real  case  study.

© 2017  Published  by  Elsevier  Ltd on behalf  of The  Society  of  Manufacturing  Engineers.

1. Introduction

Industrial manufacturing experiences an increasing competi-
tion due to the recent development of powerful machining centers
equipped with high-speed spindles and robust slide ways. Opti-
mization of machining processes is an indispensable objective of
the efficiency oriented industry. One of the strongest limitation in
the industrial utilization of these high-performance machines is
the undesired and harmful self-excited vibration, called machine
tool chatter, that spoils the surface quality, increases the toolwear
and reduces the life-time of the machine components. Reliable
prediction of these vibrations is therefore an important task for
manufacturing engineers.

The first mathematical models dealing with the self-excited
vibrations in machining operations appeared in the work of Tobias
[1] and Tlusty [2] in the 1950s and 1960s. After their pioneer-
ing research, the so-called regenerative effect became the most
commonly accepted explanation for machine tool chatter. During
the manufacturing process the vibrating tool leaves a wavy sur-
face behind, which affects the chip thickness and induces variation
in the cutting-force one revolution later. From the dynamic sys-
tem’s point of view, chatter is associated with the loss of stability
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of the stationary (chatter-free) machining process followed by a
large amplitude self-excited vibration between the tool and the
workpiece.

The stability properties of machining processes are depicted by
the so-called stability lobe diagrams, which plot stable (chatter-
free) domains in the plane of technological parameters (usually the
spindle speed and the depth of cut). These diagrams provide a guide
to the machinists to select optimal machining parameters and to
avoid undesired vibrations.

There exist several mathematical methods to analyze the sta-
bility properties of machining operations and to construct stability
lobe diagrams. Some of them apply the measured frequency
response functions (FRFs) directly, such as the single-frequency
solution or zero-order approximation (ZOA), the multi-frequency
solution (MFS) [3,4] or the extended multi-frequency solution
(EMFS) [5]. Other time-domain based techniques, such as the semi-
discretization method [6,7], the full-discretization method [8], the
integration method [9] and their extension by the implicit subspace
iteration method [10], the Chebyshev collocation method [11,12]
and the spectral element method [13], require fitted modal param-
eters as input. In spite of the large number of available numerical
methods, application of stability lobe diagrams is still not consid-
ered to be an essential element of machining. The primary reason
for this is that the prediction of chatter-free technological parame-
ters is not reliable enough to convince decision-makers. The input
data used for the stability analysis, namely, the dynamics of the
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machine tool center and the parameters of the chip removal process
model, contain many uncertainties and are loaded with measure-
ment noise. These uncertainties together with model reductions
and simplifications lead to an impaired representation of the real
dynamical system.

Due to its simplicity, impact test is one of the most commonly
used method to characterize the dynamics of the machine tool
system and to obtain the frequency response functions. Dynamic
measurements by impact tests are, however, affected by several
uncertain factors: statistical variations, imperfect calibration coef-
ficients for the hammer and transducer or misalignment between
the intended and actual force direction during impact. For a detailed
uncertainty analysis of measured FRFs see [14,15].

Despite the need for a reliable method to predict robust sta-
bility lobe diagrams, only a few work have been published in this
topic. The edge theorem combined with the zero exclusion method
is presented in [16,17] and compared to the results obtained by lin-
ear matrix inequalities in [18]. A robust chatter prediction method
(RCPM) is introduced in [19], which applies a probabilistic approach
and considers the parameters as random variables. A different
concept based on fuzzy stability analysis is detailed in [20]. The
above mentioned techniques require fitted modal parameters (and
cutting parameters) as input variables, and the calculation time
significantly increases with the number of uncertainties, therefore
most of them are limited to systems with few uncertain param-
eters. In [21], an approximating numerical method is proposed,
which provides confidence levels of stability boundaries for higher
number of uncertain parameters. Robust stability analysis of turn-
ing processes is presented in [22] by means of envelope fitting
around the measured FRFs combined with the single-frequency
method. This method, however, cannot be applied to time-periodic
processes, such as milling operations.

This paper presents a completely frequency-based solution for
the robust stability analysis of milling processes, which utilizes
directly the uncertainty of the measured frequency response func-
tions and requires no fitted modal parameters. The stability analysis
for milling operations is based on the extended multi-frequency
solution [4,5], while the robust stability analysis is applied accord-
ing to the concept of structured singular values (�-values) [23,24].
The presented algorithm is able to generate robust stability lobe
diagrams in reasonable time, which is an advantage in industrial
applications.

The structure of the paper is as follows. In Section 2 the dynam-
ical model of milling is introduced. Section 3 gives a detailed
description on the stability analysis in frequency domain in a form,
which is suitable for the robust stability analysis of the system. The
structured singular value calculation is presented in Section 4. The
combination of these two concepts gives the new results in Section
5, which also highlights several numerical issues to solve the prob-
lem efficiently. The method is tested in a real case study in Section
6. The results are concluded in Section 7.

2. Dynamical model of milling

In this section, cutting force model is presented for conventional
helical milling tools with uniform helix angle, which are the most
often used type of tools in the industry. Note, however, that the
methods introduced in this paper can be extended to tools with
nonuniform helix angles [25], variable pitch [26,27], serrated cutter
and distributed delay models [28], too.

The helical tool shown in Fig. 1 has N teeth of uniform helix
angle ˇ. According to [7], the tool is divided into elementary disks
along the axial direction. The relation between the helix angle ˇ,

Fig. 1. Dynamical model of milling with rigid workpiece and compliant tool.

diameter d and the helix pitch lp is tan  ̌ = d�/(Nlp), thus the angular
position of the cutting edges along the axial direction reads

ϕj(t, z) = 2��s

60
t  + j

2�
N

− z
2�
Nlp

, (1)

where z is the coordinate along the axial immersion and �s is the
spindle speed given in rpm. The elementary cutting-force compo-
nents in tangential and radial directions acting on tooth j at a disk
element of width dz are

dFj,t(t, z) = gj(t, z)
(
Kt,e + Kt,chj(t, z))

)
dz, (2)

dFj,r(t, z) = gj(t, z)
(
Kr,e + Kr,chj(t, z))

)
dz, (3)

where hj(t, z) is the chip thickness cut by tooth j at axial immersion
z, Kt,e and Kr,e are the tangential and radial edge force coefficients,
Kt,c and Kr,c are cutting force coefficients [29]. The screen function
gj(t, z), which indicates whether the cutting edge is in contact with
the material or not, reads

gj(t, z) =
{

1, if ϕen < (ϕj(t, z)mod 2�) < ϕex,

0, otherwise,
(4)

where ϕen and ϕex are the entry and the exit immersion angles.
The position vector of the center of the tool-tip at time t is

denoted by r(t) = (x(t) y(t))�. The actual chip thickness at tooth j
then can be calculated approximately as

hj(t, z) ≈ (fz + r(t) − r(t − �))�
(

sin ϕj(t, z)

cos ϕj(t, z)

)
, (5)

where vector fz = (fz 0)� describes the feed per tooth in direction
x, and the tooth-passing period in case of constant pitch angle is
� = 60/(N�s). The resultant cutting force vector F(t) = (Fx(t) Fy(t))�

can be calculated as

F(t) = −
N∑
j=1

∫ ap

0

Tj(t, z)

(
Kt,e + Kt,chj(t, z)

Kr,e + Kr,chj(t, z)

)
gj(t, z)dz, (6)

where the transformation matrix is

Tj(t, z) =
(

cos ϕj(t, z) sin ϕj(t, z)

− sin ϕj(t, z) cos ϕj(t, z)

)
. (7)

Assuming small perturbation �(t) about the periodic motion
rp(t) = rp(t + �) of the stationary cutting, i.e. r(t) = rp(t) + �(t), the cut-
ting force can be expanded as

F(t) = F(t)|rp(t) + Dr(t)F(t)|rp(t)(ε(t) − ε(t − �)), (8)

where Dr(t) is the gradient w.r.t. r(t) [25]. Derivation for nonlinear
cutting force characteristics and generalized milling tools are pre-
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