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a  b  s  t  r  a  c  t

Efficient  gearbox  health  monitoring  and  effective  representation  of  diagnostic  results  of  dynamical  sys-
tems have  remained  challenging.  In  this  paper,  a new  approach  to using  deep  learning  for  translating
diagnostic  results  of  one-dimensional  time  series  analysis  into  graphical  images  for  fault  type  and  sever-
ity  illustration  is  presented,  with  gearbox  as a representative  example.  Specifically,  time  sequences  are
first converted  by wavelet  analysis  to  time-frequency  images.  Next,  a  deep  convolutional  neural  network
(DCNN)  learns  the  underlying  features  in  the time  frequency  domain  from  these  images  and  performs  fault
classification.  Experiments  on  gearbox  data  demonstrates  effectiveness  and  efficiency  of  the  developed
approach  with a classification  accuracy  better  than  99.5%.

©  2017  The  Society  of  Manufacturing  Engineers.  Published  by Elsevier  Ltd.  All rights  reserved.

1. Introduction

The widespread application of gearboxes in manufacturing and
transportation has continually motivated research that aims at
effective and efficient gearbox health monitoring and fault diag-
nosis techniques. A majority of the techniques reported in the
literature utilize vibration signals acquired by sensors for fault anal-
ysis.

The most important components in gearbox vibration spec-
tra are the tooth meshing frequency and its harmonics, together
with sidebands caused by modulation phenomena [1]. Increments
in the number and amplitude of such sidebands may  indicate a
fault occurrence and deterioration. Traditional methods to obtain
vibration spectra are Fast Fourier Transforms (FFT) and Short-
Time Fourier Transforms (STFT). It has been shown that FFT is
unable to reveal the dynamic features of non-stationary signals,
while STFT cannot achieve satisfactory resolution in both the time
and frequency domains at the same time [2]. In recent years, it
has been demonstrated that time-frequency distribution of the
wavelet transform is more effective in identifying frequency tran-
sitions along time than the traditional approaches, owing to its
multi-resolution feature localization capabilities [3]. Other spec-
tral analysis methods such as Hilbert transforms are applied as a
post-analysis technique to wavelet transform, to identify the fre-
quency components of interest. Fault detection and fault severity
classification in this approach are achieved by visual inspection of
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the numbers and energies of sidebands. This limits the technique
to small volume data analysis. With large scale data to be analyzed,
it is advantageous to have an automated classification system to
interpret the time-frequency distributions of the vibration signals
and make the decision (classified gearbox fault type and severity).

There has been ongoing research towards using neural networks
in combination with wavelet transforms to achieve good classifi-
cation accuracy. Use of neural networks for fault classification has
been demonstrated previously in the case of helicopter gearbox [4].
However, multi-sensor installation was required to achieve class
separability in fault classification [5] and the accuracy was depen-
dent on feature selection. In this paper, an automatic approach for
feature identification based on deep learning is established. Deep
neural architecture has been used in numerous classification appli-
cations such as image recognition [6,7], object classification [8]
and handwritten digit data classification [9]. Deep neural networks
have also been used in health diagnosis such as in the case of electric
power transformers and aircraft engines [10], and electro motors
[11]. Moreover, it has been demonstrated that such networks are
robust, and can be trained on large scale data [12] and to be not
affected by image distortion [13].

In this paper, wavelet analysis and deep convolution neural
network (DCNN) are integrated together for gearbox fault sever-
ity classification. The advantage of using wavelet transforms with
deep neural architecture is two-fold. Wavelet transforms can rep-
resent time series data in the time-frequency domain, capturing the
fault related frequency components effectively. With converted 2D
images based on acquired wavelet coefficients, DCNN, as a transla-
tor, can dig and extract the deep features in the images related to
fault severity, and finally classify the vibration data.
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Fig. 1. (a) Vibration Signal and (b) Corresponding Time-Frequency Spectral through Wavelet Transform.

The remainder of the paper is organized as follows. The theoret-
ical background for the proposed method of wavelet analysis and
deep learning is discussed in Section 2. Section 3 deals with the
experimental setup and the network structure, and also provides
the results. Concluding remarks are presented in Section 4.

2. Diagnosis methods

A combination of wavelet transforms and deep learning analy-
sis is proposed for health condition monitoring of gearbox faults.
In this section, fundamental theory of wavelet analysis and DCNN
are first introduced, followed by the illustration of automated fault
severity classification based on time-frequency images through
integrated wavelet and DCNN.

2.1. Wavelet analysis

Fault detection directly from the time series, e.g., vibra-
tion signals measured from the gearbox, is difficult. Various
methods are used to process these time series into a suitable
time-frequency domain. A time-frequency representation simul-
taneously describes the occurrence of a signal component and its
frequency development [14]. In traditional methods like STFT, high
resolution in both frequency and time domain is not possible. How-
ever, such a resolution is necessary in the case of fault detection
where time-frequency information of fault occurrence is not avail-
able beforehand.

Wavelet transform [15] is a method which is able to represent
the signals in multiple resolutions. In early stages of fault initia-
tion, the vibration component associated with the fault is small
and requires high sensitivity deduction. It has been shown that
time-frequency distributions are effective in detecting such faults
[16]. Additionally, different faults produce vibration components of
different duration. Since wavelet transform uses varying window
sizes, all the components can be displayed simultaneously.

Considering a vibration signal x(t), it can be decomposed into
a series of wavelet coefficients at different scales through wavelet
transform [3]. Mathematically, it can be expressed as
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where s is the scaling factor for dilation, t is the time for translation,
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where R denotes the set of real numbers. By choosing a suitable
wavelet base, the vibration signal can be transformed into the
time-frequency domain, which is able to reflect the transition of
frequency components over time with a high resolution.

Fig. 1(a) shows a simulated vibration signal with 2 gear mesh-
ing frequency components (160 Hz and 420 Hz) modulated on
a 3600 Hz base and a white noise. Formulation of this vibra-
tion signal is e−400∗t sin (2� ∗ 3600 ∗ t) + 0.7 ∗ sin (2� ∗ 420 ∗ t) +
sin (2� ∗ 160 ∗ t). Fig. 1(b) denotes the time-frequency spectra con-
verted by wavelet transform [17]. The gear meshing frequencies
420 Hz and 160 Hz can be seen clearly.

2.2. Deep convolutional neural network

Deep neural network (DNN) is a type of artificial neural network
with multiple hidden layers of units embedded between the input
and output layers, and it has been gaining popularity in the recent
years, particularly in the field of image processing and classification.
Images contain features that reflect the underlying architecture
that makes each image a unique representation. These features
might not appear to be visually distinct between images. How-
ever, deep neural networks can be trained to learn such features
at different levels of abstraction [18].

Deep convolutional neural network (DCNN) is one of the DNN
structures. It consists of hierarchically arranged trainable stages
that “learn” the efficient internal representation for all data [19].
The neurons in a DCNN are arranged in the form of feature maps. In
the case of image processing, the input to the network is a 2D array
representing the image. A typical convolutional network consists
of two to four stages of convolutional layers and pooling layers.

The input to a convolutional layer is an image x of size m × n. The
convolutional layer contains k kernels (filters) of size p × q, smaller
in dimension than the input image. The output of the convolutional
layer is a set of k feature maps of size (m − p + 1) × (n − q + 1) by
striding over one pixel. For example, as shown in Fig. 2, a kernel
with size 5 × 5 is applied to deliver a pixel in the output map. The
kernel, realized by assigning a weight kij to each pixel in the input
image and calculated as weighted sum, extracts certain features
(e.g. edge information) contained in the image. The weighted sums
are then added by an additive bias and passed through a non-linear
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