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This paper compares Green's function solutions obtained for different heat conduction models, such as
the Fourier-Kirchhoff heat equation, the Cataneo-Vernotte wave equation and the Dual-Phase-Lag
equation. The solutions are computed for a nanometer size one-dimensional benchmark structure with
Neumann and Dirichlet conditions imposed at its boundaries. Particular attention was paid to the
analysis of heat diffusion speed predicted by the considered heat conduction models and its dependence
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1. Introduction

The continuous miniaturization of electronic devices and the
increased speed of their operation rendered thermal simulation of
electronic nanosystems an essential part of their analysis and design.
For almost two centuries thermal processes were modeled employing
the heat transfer theory proposed by Fourier in his famous work in
1822 [1]. The main shortcoming of this classic theory consists in the
fact that it was derived based on the Fourier law stating that the heat
flux is directly proportional to the temperature gradient, what leads to
the parabolic Fourier-Kirchhoff (FK) equation and implies instanta-
neous propagation of temperature response throughout an entire
analysis domain. For relatively large structures and long thermal
analysis times this equation produces results consistent with measure-
ments. However, during analyses of very rapid thermal processes or
small structures, the temperature values predicted by this model do
not agree any more with experimental data [2].

Consequently, alternative approaches were needed which would
allow taking into account certain microscale effects in macroscale
heat conduction models. The first effort to amend the classic Fourier
theory was the modification proposed in 1958 independently by
Cattaneo and Vernotte who postulated the existence of a heat flux
delay with respect to temperature changes due to a relaxation time
constant what lead to the Cattaneo-Vernotte (CV) hyperbolic wave
equation [3,4]. This theory was further developed by Tzou [5], who
introduced yet another time constant, which allowed temperature
responses to be delayed with respect to heat flux changes, and
formulated the Dual-Phase-Lag (DPL) equation. The applicability of
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these non-Fourier heat conduction models, summarized in [6], to the
analysis of nanoscale electronic devices has been already demon-
strated in [7,8].

Theoretically, more appropriate for analyses of thermal phenom-
ena in nanostructures would be different microscopic models and
approaches, such as the Boltzmann Transport Equation (BTE) or the
Molecular Dynamics (MD) simulations reviewed in [9]. However, due
to their high computational complexity and long simulation time, they
can be employed only for analysis of individual devices and they do
not seem appropriate for simulations at the system level. Fortunately,
as demonstrated in [10], it is possible to derive the DPL equation from
the BTE by relating microscopic model parameters to the heat flux and
temperature relaxation time constants.

This paper, summarizing the authors' research on various heat
conduction models, is organized as follows. The next section
introduces briefly the considered heat conduction models. Then,
for each model the construction of the Green's function (GF) for a
one-dimensional benchmark structure is presented in detail. Next,
the Green's function solution equations are formulated and the
temperature distribution evolution in time is computed and
compared for different models. In particular, the influence of the
temperature and heat flux time delay values on the heat diffusion
speed is investigated.

2. Comparison of heat conduction models

The original Fourier law of heat conduction assumes that the
heat flux q is proportional to the negative gradient of temperature
T. The introduction of the aforementioned heat flux and tempera-
ture relaxation time constants 7, and 77 leads to the modified
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Fourier law presented in Eq. 1. Compared to the Fourier law, this
equation has two additional terms containing heat flux and
temperature gradient time derivatives. The thermal conductivity
k is the measure of heat conduction rate and the negative signs
before terms involving the temperature gradient indicate that heat
flows from regions of higher temperature towards cooler areas.
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Without internal heat generation and when model parameters

do not depend on temperature, introducing the above relation into

the energy balance performed for a unit volume the following DPL

equation can be derived [11]
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The parameter « is called thermal diffusivity. Compared to the
FK heat equation, in the DPL equation two new terms proportional
to the relaxation time constants appear. They contain the second
time derivative and the mixed third order derivative of tempera-
ture. The latter term, in turn, distinguishes the DPL equation from
the CV one. For the convenience of mathematical analyses, the DPL
equation is considered sometimes in its dimensionless form where
the temperature rise @ over the ambient temperature fulfills the
following relation [11]:
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The CV wave equation is obtained from Eq. 3 when B equals to
0 whereas the FK relation is obtained when parameter B equals to
0.5. It is worth mentioning that the latter condition implies that
the FK equation can be obtained for any value of the relaxation
time constant greater than zero as long as 7, and 77 are equal
each other.

3. Construction of Green's functions

This section will provide a brief theoretical introduction to
Green's functions. This will be followed by the description of the
benchmark structure and the presentation of the appropriate GFs
for each of the heat conduction models considered in this paper.

3.1. Theoretical introduction to Green's functions

Green's functions are versatile mathematical tools suitable for
obtaining solutions of linear partial differential equations [12,13]. A
Green's function for the heat equation can be regarded as a tempera-
ture response in a point x at time t caused by instantaneous heat
generation in a point X' at time 7. Thus, in order to compute the
temperature response in time, it is enough to integrate a GF over the
entire volume and time where heat is generated. Alternatively, a GF
describes the temperature distribution at a point x in time t due to an
initial temperature rise at a point x'. Then, the entire temperature field
can be computed by integrating over the entire domain a GF evaluated
at the starting time of the analysis [14].

Particular GFs depend only on problem geometry and applied
boundary conditions. Thus, using the same GF the total tempera-
ture rise can be computed as the superposition of individual
temperature rises caused by different factors, such as the initial
temperature distribution, the internal heat generation and the
non-homogeneous boundary conditions.

Green's functions can be derived using different methods, e.g.,
the method of images, the Laplace transform method or the
Fourier separation of variables method yielding solutions in
different, but mathematically equivalent, forms. Generally, the
first two methods produce series solutions which are rapidly
convergent for short times whereas the Fourier method solutions
are better convergent for large times.

3.2. Benchmark structure

The one-dimensional benchmark structure analyzed in this paper,
shown in Fig. 1, is a thin slab of a thickness d equals to 10 nm. This
structure is heated from the left side by the heat flux q and ideally
cooled at the right one where the isothermal boundary condition is
imposed. This structure could resemble a real electronic nanostruc-
ture, whose lateral dimensions are typically much larger than its
thickness. The choice of this test structure was made expressly to
render possible the comparison of obtained results with the previous
simulations carried out by the authors employing the FK heat
equation and CV wave equation in [15,16] respectively.

3.3. Green'’s functions for the benchmark structure

Green's functions are obtained as solutions of an auxiliary
equation which is exactly the same as the original one; with the
only exception that its boundary conditions are of the same type
but homogenous ones. Thus, the GFs for the three heat conduction
models considered here can be found applying to the benchmark
structure the adiabatic condition on the left boundary and assum-
ing that the temperature at the right boundary equals to 0, i.e. the
same as the original boundary condition [14].

Then, since the analyses published in [15] showed that even for
times of the order of picoseconds and nanometer dimension the
Fourier separation of variables solution method is still computa-
tionally efficient, the GF obtained using this method can be used
for the FK equation. This function, evaluated at the nonhomoge-
neous boundary at =0, has the form of the following infinite
series:
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Although theoretically the number of series components is
infinite, in practice it is enough to compute only several tens of
components to attain the four digit accuracy. The eigenvalues /3,
appearing in the formula can be found applying the specific
boundary conditions and they are equal to 7 (n — 1/2). For different
time instants this function will be plotted and analyzed later on
together with the discussion concerning the DPL equation.

On the other hand for the CV wave equation the GF obtained
with the Fourier solution method is slowly convergent and it
requires taking into account thousands of series terms, hence it is
more convenient to use the GF obtained using the method of
images. This function, shown in Eq. 6, can be expressed as the
product of an exponential function and the zeroth order modified

heat 3 | structure thickness | temperature
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Fig. 1. One-dimensional benchmark structure with imposed boundary conditions.
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