
Please cite this article in press as: Lynn R, et al. Voxel model surface offsetting for computer-aided manufacturing using virtualized
high-performance computing. J Manuf Syst (2016), http://dx.doi.org/10.1016/j.jmsy.2016.12.005

ARTICLE IN PRESSG Model
JMSY-511; No. of Pages 9

Journal of Manufacturing Systems xxx (2016) xxx–xxx

Contents lists available at ScienceDirect

Journal of Manufacturing Systems

journa l homepage: www.e lsev ier .com/ locate / jmansys

Voxel model surface offsetting for computer-aided manufacturing
using virtualized high-performance computing

Roby Lynn a,∗, Didier Contis b, Mohammad Hossain c, Nuodi Huang d, Tommy Tucker e,
Thomas Kurfess a

a Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA, USA
b Georgia Institute of Technology, College of Engineering, Atlanta, GA, USA
c Georgia Institute of Technology, Department of Computer Science, Atlanta, GA, USA
d Shanghai Jiao Tong University, School of Mechanical Engineering, Shanghai, China
e Tucker Innovations, Inc., Charlotte, NC, USA

a r t i c l e i n f o

Article history:
Received 23 September 2016
Received in revised form
12 November 2016
Accepted 16 December 2016
Available online xxx

Keywords:
Cloud manufacturing
Distributed manufacturing
Computer-aided manufacturing
Computer numerical control
Virtualization
High-performance computing
Voxel
GPGPU
CUDA

a b s t r a c t

Curve and surface offsetting is a common operation performed on solid models when planning toolpaths
for a machining operation. This operation is usually done in a computer-aided manufacturing (CAM)
software package to define the path along which the center of a cutting tool will follow to create a given
feature. The CAM software then translates the toolpath created from the offset into G-Code, which is the
standard programming language of CNC machine tools. The toolpath planning process can be computa-
tionally intensive; thus, a powerful workstation is required to run the CAM software effectively. These
standalone workstations can be inconvenient due to their cost and size. Many organizations have been
turning to virtualization as an alternative to multiple standalone workstations; virtualization allows for
many users to access desktop environments that are hosted from a single remote server. This has the ben-
efit of isolating the user from both OS and hardware requirements for certain software, and also allows
them to run the applications they need from anywhere. This research explores the emerging area of vir-
tualized general purpose computation on graphics processing units (GPGPU); this technique is used to
support the development of a voxelized CAM package that allows for rapid toolpath generation for com-
plex parts. The surface offset performance is benchmarked on various local and virtualized platforms to
evaluate the losses from virtualization. Results indicate a minor loss of performance between virtualized
and local GPUs, which is to be expected due to the abstraction of hardware from a virtual machine. Addi-
tionally, the development of a GPU-sharing implementation using a server operating system is described
and analyzed; results indicate that, as compared to single virtual machines, the GPU-sharing approach
demonstrates higher computational efficiency with the addition of compute load to the GPU.

© 2016 The Society of Manufacturing Engineers. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Machining is a decades-old manufacturing process that is in
wide use today because it enables manufacturers to create parts
with complex geometry and tight tolerances. Originally, machin-
ing was performed using manual equipment where the motion of
the cutting tool was controlled with handwheels. Today, modern
machining operations are performed using computer-numerical

∗ Corresponding author.
E-mail addresses: roby.lynn@gatech.edu (R. Lynn), didier.contis@coe.gatech.edu

(D. Contis), mhossain7@gatech.edu (M. Hossain), huangnuodi@126.com
(N. Huang), tommy@tuckerinnovations.com (T. Tucker), kurfess@gatech.edu
(T. Kurfess).

control (CNC) machine tools, where the tool motion is controlled
by servomotors. The machine tool is programmed using G-Code,
which is a collection of movement commands for the machine tool
that describe the sequence of tool motions needed to create a part.
The G-Code for the part can be created either manually or through
the use of CAM software. For complex parts that require many
machine axes, such as 5-axis parts, CAM software is essential to
the rapid creation of accurate toolpaths.

CAM software, while incredibly useful, can also be difficult to
use properly. The CAM programmer must have machining experi-
ence to be able to determine appropriate machining parameters
for order-of-operations; additionally, the operation of the soft-
ware itself requires specialized training [1]. Many manufacturers
and other machine tool professionals have expressed the need for

http://dx.doi.org/10.1016/j.jmsy.2016.12.005
0278-6125/© 2016 The Society of Manufacturing Engineers. Published by Elsevier Ltd. All rights reserved.

dx.doi.org/10.1016/j.jmsy.2016.12.005
dx.doi.org/10.1016/j.jmsy.2016.12.005
http://www.sciencedirect.com/science/journal/02786125
http://www.elsevier.com/locate/jmansys
mailto:roby.lynn@gatech.edu
mailto:didier.contis@coe.gatech.edu
mailto:mhossain7@gatech.edu
mailto:huangnuodi@126.com
mailto:tommy@tuckerinnovations.com
mailto:kurfess@gatech.edu
dx.doi.org/10.1016/j.jmsy.2016.12.005

Please cite this article in press as: Lynn R, et al. Voxel model surface offsetting for computer-aided manufacturing using virtualized
high-performance computing. J Manuf Syst (2016), http://dx.doi.org/10.1016/j.jmsy.2016.12.005

ARTICLE IN PRESSG Model
JMSY-511; No. of Pages 9

2 R. Lynn et al. / Journal of Manufacturing Systems xxx (2016) xxx–xxx

easier-to-use CAM software [2]. Additionally, the machining simu-
lations provided by current CAM software are not able to accurately
represent gouging and toolmarks that are left behind once machin-
ing is complete. A better approach is needed that is both easier to
use and provides more realistic simulation of volume removal dur-
ing the machining process to provide better feedback to the CAM
programmer.

Typical CAM software relies on analytical models to describe
part geometry, such as a boundary representation (B-rep). While
these models are compact and easy to store in memory, their com-
plexity is limited by the precision of the computer that is used to
process them. Additionally, limitations exist in the modification
of the part surfaces when simulating material removal during the
machining process [3]. To overcome these limitations, this work
proposes the use of a voxel-based part model where the entire
part is discretized into small cubes. Similar to a two-dimensional
image, which is made up of small pixels, the voxel model is made
up of small cubes called voxels. The structure of the voxelized part
model, known as a Hybrid Dynamic Tree (HDT), allows for sim-
plified computations of Boolean volume subtraction during the
simulation of the machining process, which can allow for more
accurate visualization and feedback to the CAM operator [4,5]. The
voxel model, however, requires a different strategy than an ana-
lytical model to process efficiently. Because the voxel model is
effectively a large array, different operations on the array can be
performed simultaneously to accelerate the speed at which the
model is processed. These operations can be performed on a paral-
lel computing platform, such as a graphics processing unit (GPU).
The GPU implementation of the HDT has been shown to greatly
outperform a comparable implementation that relied on a single
CPU thread [6].

While the use of the voxel model allows for distinct advantages
over traditional analytical models, the speed at which the model
can be processed is dependent upon the performance of the paral-
lel computing platform that is employed. For this implementation,
NVIDIA graphics cards with compute unified device architecture
(CUDA) functionality were employed. CUDA is an application pro-
gramming interface (API) that allows for access to the GPU for
computational instead of graphics purposes. Many modern com-
puters are equipped with discrete GPUs, which allows for use of
the software without additional hardware. However, many mobile
devices, including laptops and tablets, do not have discrete GPUs
that can be used for computation. For users without access to a GPU
compute device, virtualization can be employed to allow them to
access a computer with GPGPU capability.

Virtualization is the implementation of a simulated desktop on a
computer or server. This is accomplished by abstracting the physi-
cal hardware of the machine. In the most basic sense, virtualization
can be used to run an instance of a guest operating system (OS) on
top of an already running host OS; for example, a user could start
a Linux session using virtualization software inside Windows to
allow them to simulate a Linux computer even though the native
OS is Windows. Virtualization is frequently used to host multiple
desktops on a single server; this allows for many users to access
the same hardware and each have an individual desktop. Power-
ful hardware can be installed in the server, and users can access it
from any internet connected device. Thus, the clients do not need
physical access to a GPU compute device, as the hardware can be
virtualized from the remote server. While the virtualization of GPUs
for graphics rendering is commonplace, virtualization for GPGPU is
less widespread. Commercial virtualization solutions support this
functionality to a limited extent; however, there is a deficiency of
solutions that allow for multiple users to share a single GPU for
compute tasks. The present work explores a time-sharing approach
to GPU virtualization that allows for many simultaneous users to
perform toolpath planning on a single GPU.

The remainder of this paper is organized as follows: first, back-
ground information in presented on the current states of both
the virtualization of engineering software and the use of GPU-
acceleration in engineering computation; second, the state of
virtualized GPUs for computation is discussed. Next, a user-friendly
voxelized CAM package called SculptPrint is introduced. Sculpt-
Print relies on the GPU to process a voxel model and allows for very
accurate simulation of the machining process. Further technical
details about SculptPrint and the voxel model are discussed. Next,
the experimental setup to evaluate the performance of SculptPrint
on a virtualized platform is discussed and results are presented.
Discussions and conclusions evaluate the practicality, advantages
and limitations of the virtualized implementation.

2. Related Work

Cloud manufacturing is the idea of leveraging cloud comput-
ing resources to facilitate manufacturing; this can be done through
distributed computing, virtualization, etc. [7]. Multiple researchers
have shown that virtualization is an important tool for realizing
higher security and more widespread deployment of large applica-
tions in the manufacturing environment [8,9]. Virtualization allows
users to remotely access high-end HPC (high performance com-
puting) hardware from any device and leverage the power of
that hardware without being physically close to it [10]. This is
an example of infrastructure-as-a-service (IaaS), where the actual
computing hardware is provided to users for them to run compu-
tations on. Typical engineering software, such as computer-aided
design (CAD), computer-aided engineering (CAE) and CAM pack-
ages require hardware acceleration for optimal performance. This
usually necessitates a powerful CPU, large amounts of RAM and a
discrete GPU. The GPU is the most critical component for realizing
high-performance parallel computation on a single machine [11].
To remove these hardware requirements from the client machine,
engineering software can be virtualized and presented to the user
on a virtual desktop.

2.1. Virtualization of engineering software

Hardware-accelerated virtual desktops have been used for
CAD/CAM software virtualization in large organizations previously
[12–15]. Recent improvements in display protocols, such as Citrix
ICA, Microsoft RemoteFX and Teradici PCoIP, combined with hyper-
visor improvements and the emergence of graphics virtualization
technologies, have supported the adoption of VDI (virtual desktop
infrastructure) for CAD/CAM workload [16]. Virtualization allows
for members of an organization to utilize hardware-accelerated
software from thin clients or personal machines without powerful
hardware; it also removes operating system restrictions imposed
by certain software, as the client only duplicates the display for the
user and the software itself is run on the virtual machine. Applica-
tion security and ease of troubleshooting can be increased through
the use of a private cloud that has a controlled user base. The
implementation of virtualized desktops requires a hypervisor, for
example Microsoft Hyper-V, Citrix XenServer or VMWare vSphere.
The hypervisor is responsible for dividing the physical resources
of the server amongst the VM sessions. The hypervisor requires
computational resources to run, and thus performance of virtual
machines is not identical to that of standalone machines [17]. While
this can be a problem, more powerful server hardware can be
selected to mitigate performance losses. Additionally, some virtual-
ization solutions, such as Citrix XenServer, grant VMs direct access
to hardware resources [18], which bypasses parts of the abstraction
layer that causes slowdowns in traditional virtualization. When
applied to GPUs, this is known as PCI-passthrough: the PCI device is

dx.doi.org/10.1016/j.jmsy.2016.12.005

Download English Version:

https://daneshyari.com/en/article/5469504

Download Persian Version:

https://daneshyari.com/article/5469504

Daneshyari.com

https://daneshyari.com/en/article/5469504
https://daneshyari.com/article/5469504
https://daneshyari.com

