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Abstract

Our work presents an extension of a composite sphere model to temperature-dependent elastic effects accompanied by

curing. Homogenization of a representative unit cell (micro-RVE) on the heterogeneous microscale which accounts

for thermo-chemo-mechanical coupling with linear elasticity yields volumetric effective properties. Two conceptions

are considered: Firstly, a homogeneous mixture with n-phases is assumed. Secondly, a geometric arrangement on the

microscale is represented by the n-layered composite sphere model. In a numerical study for a 3-phase matrix it is

demonstrated that the effective properties lie within certain bounds.

c© 2017 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the scientific committee of the 1st Cirp Conference on Composite Materials Parts

Manufacturing.

Keywords: Curing; shrinkage; thermo-mechanical-chemical coupling; homogenization; effective properties; RVE

1. Introduction

Polymeric materials are broadly applied in

carbon- and glass fibre-reinforced composites

(FRP), epoxy laminates and particle-reinforced

polymer structures, cf. [1], [2]. Two important pro-

duction processes of FRPs are resin transfer mold-

ing (RTM) and reaction injection molding (RIM).

In both processes a fibre preform or dry fibre re-

inforcement is packed into a mold cavity. After

closing, a resin or resin system as mixture of reac-

tants, e.g. resin and curing agent, is pumped into the

mold under pressure until the mold is filled. Subse-

quently the curing cycle starts.

A reliable and predictive simulation of the

production process requires the thermo-chemo-

mechanical effective material properties depending

on curing. For this purpose homogeneous and het-

erogeneous conceptions for the matrix can be dis-

tinguished as follows:

• Homogeneous mixture: An equally distributed

mixture is assumed for all constituents, resin,

curing agent and solidified material. Concern-

ing the cure dependence of effective properties,

several ad hoc assumptions are made in the lit-

erature. At least two approaches can be dis-

tinguished for the effective properties, e.g. for

the compression modulus: According to [3] a

linear relationship is assumed for the compres-

sion moduli of the monomer (or uncured resin

and curing agent) and the solid which essentially

represents an upper Voigt bound. Contrary, in

[4] a linear relationship is derived for the effec-

tive compressibility which essentially represents

a lower Reuss bound for the effective compres-

sion modulus. It is well known, that the effective

properties obtained for a homogeneous mixture

are only dependent on phase fractions. These

are bounds for more advanced approaches, where

a geometrical arrangement of the heterogeneous

microscale is taken into account.

• Heterogeneous mixture: A geometrical arrange-

ment of a heterogeneous microstructure is in-

troduced in [6] in a so called composite sphere
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model. To solve for effective properties as ex-

act, analytical solutions for a 2-layered compos-

ite sphere model, a 2-layered inclusion is com-

pared to an equivalent homogeneous sphere with

identical boundary conditions, see [7]. Concern-

ing the cure dependence of the effective prop-

erties, in [8] the 2-layered composite sphere

model is extended to account for thermo-chemo-

mechanical coupling. In [9], a mesoscopic model

for temperature-dependent visco-elastic effects

accompanied by curing of FRP is investigated. In

comparison to Voigt and Reuss bounds, the effec-

tive properties from [8] for a 2-phase mixture are

used. The authors conclude, that the eigenstrain

state for a fully cured FRP is strongly dependent

on the choice of effective properties. Based

on the works [6], [7], micromechanical modeling

for the effective elastic moduli for an n-layered

spherical inclusion is introduced in a so called

(n + 1)-phase model in [10]. Here, an infinite

medium is constituted of an n-layered inclusion,

embedded in a matrix which is denoted by phase

n + 1. An extension of an n-layered compos-

ite sphere model to pure heat-dilatation is pro-

posed by [11]. Furthermore, for the (n+1)-phase

model a thermo-chemo-mechanical coupling is

proposed in [12], where it is also shown that the

n-layered composite sphere model and the (n+1)-

phase model yield identical results.

To the authors knowledge, all three constituents,

resin, curing agent and solid, occurring in the

curing process (of a polymeric matrix) have not

been considered so far by a 3-layered compos-

ite sphere model to derive volumetric effective

properties while accounting for thermo-chemo-

mechanical coupling. This contribution aims to

close this gap. In order to become more general,

the case with n spherical constituents is taken into

account. To this end, two different conceptions

are investigated: Firstly, an equally distributed n-

phase homogeneous mixture is assumed on the mi-

croscale. Secondly, an extension of the 2-layered

composite sphere model in [8] an n-layered com-

posite sphere is considered on the microscale as a

heterogeneous mixture.

2. Composite sphere models: Overview

Figure 1 introduces two different idealizations

which are used for the derivation of effective prop-

erties in the following sections: a) a homogeneous

mixture and b) an n-layered composite sphere

model as extension of [7]. Both idealizations have

in common that a spherical inclusion is embedded

in an infinite homogeneous medium which follow-

ing [10] is denoted as matrix. Both are subjected to

Fig. 1: Two idealizations of the inclusion: a) homogeneous

sphere hom, b) heterogeneous n-layered composite sphere

het[n].

a uniform thermal loading in terms of a prescribed

temperature θ and a chemical loading in terms of a

degree of cure z (of a thermosetting polymer as in

[8]). In addition, the inclusion is subjected to me-

chanical loading in terms of a prescribed pressure

p. The distinguishing features of both conceptions

in Figure 1 are as follows:

a) Homogeneous mixture: Any spherical inclusion

with total volume v and radius Rn is homoge-

neous and represents the effective behavior.

b) n-layered composite sphere model: The con-

stituents i ∈ [1, n] with partial volumes v(i) (that

is for n = 3 from inside to outside: solid (sol),

curing agent (ca), resin (r)) and corresponding

radii Ri assemble to a total volume v.

3. Homogeneous mixture: n-phase homoge-

neous matrix model

In this section, we summarize the results in

[4] for weighted effective properties of a 3-phase

homogeneous mixture and apply it to the ma-

trix shown Figure 1.a which consists of phases

i ∈ [1, n]. At any material point P within the in-

clusion, dm(i)[t] defines the time dependent mass of

a constituent i ∈ [1, n] and dm0 is the total mass of

the mixture which is conserved during the curing

reaction, cf. [13]. With this quantities we define the

mass fraction of each constituent ζ(i)[t] =
dm(i)[t]

dm0
≥ 0

which is used to formulate the mixture rule for the

inverse of the bulk density ρ

1.
1

ρ
=

n∑
i=1

ζ(i)

ρ(i)
, where 2. ρ(i) = ρ(i)[p, θ]. (1)

Using the assumption that all phases are equally

distributed, the number of variables can be reduced

by taking into account the stoichiometry of the mix-

ture, as explained in [13]. To this end, the degree of

cure 0 ≤ z[t] ≤ 1 is introduced which represents

the chemical loading in Figure 1.a resulting in the

relation ζ(i) = ζ(i)[z] for the mass fractions in Eq.

(1.1). Combining this with Eq. (1.2) implies that
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