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Abstract 

This paper presents an analysis of potential technological advancements for a 1.5 MW wind turbine using a hybrid stochastic method to 
improve uncertainty estimates of embodied energy and embodied carbon. The analysis is specifically aimed at embodied energy and embodied 
carbon results due to the fact that life cycle assessment (LCA) based design decision making is most important at the concept design stage. The 
development of efficient and cleaner energy technologies and the use of renewable and new energy sources will play a significant role in the 
sustainable development of a future energy strategy. Thus, it is highlighted in International Energy Agency that the development of cleaner and 
more efficient energy systems and promotion of renewable energy sources are a high priority for (i) economic and social cohesion, (ii) 
diversification and security of energy supply, and (iii) environmental protection. Electricity generation using wind turbines is generally 
regarded as key in addressing some of the resource and environmental concerns of today. In the presented case studies, better results for the 
baseline turbine were observed compared to turbines with the proposed technological advancements. Embodied carbon and embodied energy 
results for the baseline turbine show an about 85% probability that the turbine manufacturer may have lost the chance to reduce carbon 
emissions, and 50% probability that the turbine manufacturer may have lost the chance to reduce the primary energy consumed during its 
manufacture. Conclusively, the presented approach is a feasible alternative when more reliable results are desired for decision making in LCA.    
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1. Introduction 

Wind and other renewable energy systems are often assumed 
to be environmentally friendly and sustainable energy sources 
in mainstream debate. All energy systems for converting 
energy into usable forms however have environmental impacts 
associated with them [1-3]. The production of renewable 
energy sources, like every other production process, involves 
the consumption of natural resources and energy as well as the 
release of pollutants [4]. Life cycle assessment (LCA) is a 
popular way of measuring the energy performance and 
environmental impacts of wind energy [1, 5]. Oebels et al. [6] 
states that estimation of embodied carbon and energy is a 
significant part of life cycle assessments. Hammond and Jones 
[7] defined embodied carbon (energy) of a material as the total 

carbon released (primary energy consumed) over its life cycle. 
This would normally encompass extraction, manufacturing 
and transportation. It has however become common practice 
to specify the embodied carbon (energy) as ‘Cradle-to-Gate’, 
which includes all carbon (energy – in primary form) until the 
product leaves the factory gate [7].   

Embodied carbon and energy are traditionally estimated 
deterministically using single fixed point values to generate 
single fixed point results [8]. Lack of detailed production data 
and differences in production processes result in substantial 
variations in emission factor (EF) and embodied energy 
coefficient (EEC) values among different life cycle inventory 
(LCI) databases [9, 10]. Hammond and Jones [7] notes that a 
comparison of selected values in these inventories would show 
a lot of similarities but also several differences. These 
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variations termed as “data uncertainty” which significantly 
affects the results of embodied carbon and embodied energy 
LCA [11]. Uncertainty is unfortunately part of embodied 
carbon and energy analysis and even data that is very reliable 
carries a natural level of uncertainty [7, 12]. Decision makers 
have different attitudes towards uncertainty or risk therefore 
information on uncertainty in LCA is highly desired [9, 11]. 
The analysis of data uncertainty is therefore a significant 
improvement to the deterministic approach because it provides 
more information for decision making [12, 13].   

A number of generally accepted and well understood 
methods such as stochastic modelling, analytical uncertainty 
propagation, interval calculations, fuzzy data sets and scenario 
modelling  are normally used to propagate uncertainty in LCA 
studies [10]. Stochastic and scenario modelling methods were 
used to propagate uncertainty in the wind energy LCA studies 
surveyed.  

The Monte Carlo analysis method used by Kabir et al. [12], 
Fleck and Huot [14] and Khan et al. [15] performs well for 
cases when reliability of the uncertainty estimate is not of 
utmost importance. This method has a drawback when 
applied, as due to its “rule of thumb” nature it may lead to 
inaccurate results. For more reliable results, Lloyd and Ries  
[8] highlights that the determination of significant contributors 
to uncertainty, selection of appropriate distributions and 
maintaining correlation between parameters are areas 
requiring better understanding. In this study, a method for 
improving uncertainty estimates is presented and discussed. 
The method employs the same basics as the Monte Carlo 
analysis but has a key distinction, aiming at removing the 
drawback of the Monte Carlo analysis method by employing a 
stochastic pre-screening process to determine the influence of 
parameter contributions. The overall aim of this study is to 
present an analysis of potential technological advancements 
for a 1.5 MW wind turbine using a hybrid stochastic method 
to improve uncertainty estimates of embodied energy and 
embodied carbon. This approach can be a valuable tool for 
design scheme selection aiming to find an embodied energy 
and embodied carbon saving design when information on 
uncertainty is needed for LCA based design decision making. 
The organisation of the content of this paper is as follows: 
Section 2 explains the fundamentals of the methodology. 
Section 3 contains a description of the case studies and results. 
Section 4 and 5 are the discussions and conclusion. 

   
Nomenclature 

CDF: Cumulative distribution function                                                                                                                        
CFRP: Carbon Fibre Reinforced Plastic 
CV: Coefficient of Variation 
DQI: Data Quality Indicator 
EEC: Embodied energy coefficient                                                                                                                        
EF: Emission Factor  
HDS: Hybrid Data Quality Indicator and Statistical  
LCA: Life Cycle Assessment 
MCS: Monte Carlo Simulation 
MDQI: Mean of DQI result 
MHDS: Mean of HDS result 
MRE: Mean Magnitude of Relative Error 

MW: Megawatt 
NM: Least number of data points required 
NMD: Least number of required data points for individual 
parameter distribution estimation 
NP:Number of parameters involved 
NREL: National Renewable Energy Laboratory 
PDF: Probability distribution function  
TIO: Technology Improvement Opportunities 

2. Methodology 

The stochastic results are calculated by MCS algorithm, 
according to the input and output relationships, using the 
intricately estimated probability distributions for the 
parameters as the inputs. Figure 1 shows the procedure for the 
hybrid data quality indicator and statistical (HDS) approach.  
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Fig. 1.  Procedure of HDS approach [9]. 

To validate the HDS approach, comparisons are made 
between the pure data quality indicator (DQI), statistical and 
HDS methods. The measurements Mean Magnitude of 
Relative Error (MRE) (Eq. (1)) and Coefficient of Variation 
(CV) (Eq. (2)) are used to measure the differences in the 
results of the pure DQI and HDS. CV is an indicator that 
shows the degree of uncertainty and measures the spread of a 
probability distribution. A large CV value indicates a wide 
distribution spread. The data requirements are also used to 
compare the HDS with the statistical method, as large enough 
sample size needs to be satisfied during parameter distribution 
estimation. The least number of data points necessary for 
estimating parameter distributions in each method is 
calculated (Eq. (3)) and compared. 
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Where MDQI is the mean of the DQI results and MHDS is the 
mean of the HDS results. 
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Where M is the mean and SD is the standard deviation 

   N ×N=N  PMDM                                (3) 
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