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Abstract 

The deformation of large thin-walled parts during the cutting processing will decrease the part accuracy, and on-line error forecasting and 
compensation control is usually used. The forecasting compensatory control (FCC) depending on modelling technique is usually helpful for 
some regular deformation. Random deformation of weak rigid thin-walled parts in the cutting process cannot be compensated easily. This paper 
develops an improved forecasting compensatory control method based on Kalman filtering algorithm to improve the prediction accuracy. The 
Kalman filtering algorithm produces the estimation of the real deformation based on the measured deformation data, and the statistical noise in 
measuring and cutting process modeling can be reduced. The effectiveness of the proposed method is validated with simulation examples. 
© 2016 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Scientific Committee of the “9th International Conference on Digital Enterprise Technology - DET 
2016.  

 Keywords: Large thin-walled part processing, Forecasting compensatory control (FCC), Kalman filtering, Prediction accuracy. 

1. Introduction 

Large thin-walled parts play a key role in the aerospace 
industry, such as aircraft and rocket. They are usually used in 
extreme conditions such as high pressure and low temperature. 
The mechanical performance and surface accuracy of the 
machined parts are important. Take the huge fuel tank 
cylinder as an example. In the inner wall, thousands of 
triangular or quadrilateral grids should be machined to reduce 
the weight and improve the transport capacity. The wall 
thickness of the triangle grid is critical to compromise the 
weight reduction and strength, and the tolerance of wall 
thickness should be controlled in the machining process.  

However, random deformation, caused by the weak 
rigidity of the part, severely affects the accuracy of the wall 
thickness during the processing. As shown in Fig.1, the 
deformation of the huge fuel tank during the milling process 
is quite stochastic, and it is difficult to predict by off-line 
modelling method.  

The technique of on-line error forecasting and 
compensation control is useful to improve the accuracy of the 
surface profile of the large thin-walled parts. Forecasting 
compensatory control(FCC), first proposed by Wu[1], is 
employed to solve the time-lag problem, and considered as 

one of the most effective methods to improve the 
manufacturing accuracy in various machining operations. It is 
successfully applied to precise motion control in 
micromanufacturing[2], machine tool error compensation[3], 
precision control in grinder[4], roundness improvement in 
taper turning[5, 6] and etc. Most researchers focus on process 
modelling, like Autoregressive moving average (ARMA) 
modelling[6, 7] and grey model[4, 8], to improve the 
prediction accuracy of the FCC scheme. The accuracy of 
these methods mainly rely on the modelling technique. 
Kalman filtering algorithm[9], which has been proved that it 
can reduce the accuracy requirement of the model because of 
its correctable power[10],is introduced to improve the 
prediction accuracy of the FCC. 
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Figure 1 The deformation of huge fuel tank in the milling 

process  
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Nomenclature 

Q    the process noise covariance 
R    the measurement noise covariance 

ku    control signal 

kw    the process noise 

kv    the measurement noise 

ˆ -
kx    a priori state estimate at step k 

ˆ kx    a posteriori state estimate at step k 
-

kP    priori estimate errors covariance at step k 

kP    posteriori  estimate errors covariance at step k 

2. Improved forecasting compensatory control algorithm 

Compared with the conventional FCC, the improved 
algorithm based on Kalman filtering can achieve better 
performance. The reasons for employing Kalman filtering 
method are listed as follows. First, according to the Bayes 
principle, the error between the predicted value and the actual 
value at the next step will grow smaller and smaller[10]. 
Kalman filtering method can not only predict data but also 
correct the established model to approach the actual value. 
Second, the filter parameters, like the process noise 
covariance Q  and the measurement noise covariance R , 
can be adjusted to improve the accuracy of the estimation. 
Third, Kalman filtering method is compatible with the 
common modelling methods. 

2.1. Kalman filtering theory 

Kalman filtering, a generalization of the least-square 
method, is a set of mathematical equations that provides an 
efficient computational means to estimate the state of a 
process, and minimizes the mean of the squared error[11].  
In addition, Kalman filtering can estimate the future states 
without precise nature of the modeled system. Consider a 
linear discrete system and the state observer as presented in 
Eq. (1): 

k+1 k k k

k k k

x = Ax + Bu + w

z = Hx + v
                            (1)             

where the state nx R  belongs to a discrete-time 
controlled process that is governed by the linear stochastic 
difference equation, nz R  is a measurement, and the 
variable ku  is a control signal. The random variables kw  
and kv represent the process and measurement noise, 
respectively. The matrix A  is the state matrix which relates 
the state at the previous time step to the state at the current 
step, and the matrix B  is the input matrix which relates the 
optional control input u  to the state x , and the matrix H  
is the output matrix which relates the state to the measurement 
z . kw  and kv  are assumed to be independent of each 
other and obey a Gaussian distribution, as presented in Eq. 
(2): 

p(w) = N(0,Q)

p(v) = N(0,R)
                                (2)      

where p(w)  is the state distribution of w , Q  is the 
process noise covariance and R  is the measurement noise 
covariance. 

In practice, Q and R  might change with each time step, 
but they are assumed to be constant in this paper. The 
measurement noise covariance R  can be measured 
practically by taking some off-line sample measurements. The 
process noise covariance Q  is difficult to be determined 
because we are not able to observe the process we are 
estimating. In general, tuning the filter parameters Q  and 
R  can acquire statistically superior filter performance. The 
tuning is usually performed off line with the help of system 
identification. In addition, A B  and H  also might 
change with each time step or measurement, but here we 
assume they are constant. 

2.2. Improved forecasting compensatory control algorithm 

The block diagram of the improved forecasting 
compensatory control algorithm is shown in Fig.2. Four key 
elements are included in this algorithm: a. On-line 
measurement and signal processing; b. prediction model 
establishment; c. Kalman filtering; d. compensation control. 
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Figure 2 Design flow of improved forecasting compensatory control 
algorithm 

A On-line measurement and signal processing 
Unlike the off-line measuring methods, the on-line one can 

be more close to the actual processing situation and monitor 
the process variables continuously. The on-line measurement 
accuracy is the core issue of the on-line measurement 
technology and severely affected by the harsh processing 
environment. To improve the on-line measurement accuracy, 
high reliability measuring equipment and the on-line signal 
processing are needed. 
B Prediction model establishment 

To estimate the state of a process through Kalman filtering, 
it is necessary to set up a model based on the measured data. 
In digital signal processing, many mathematical modelling 
methods, like Autoregressive moving average (ARMA) 
modelling [6, 7] and Grey model[4, 8], have been used. 
Autoregressive integrated moving average model 
(ARIMA)[11] has been widely used because of good 
prediction of random factor of system. ARIMA(5,0,0), 
extended to 5 previous observations, is taken as an example in 
this article: 
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