
Merging VLIW and vector processing techniques for a simple,
high-performance processor architecture

Mostafa I. Soliman a,b,n

a Computer Science and Information Department, Community College, Taibah University, Al-Madinah Al-Munawwarah 2898, Saudi Arabia
b Computer and System Section, Electrical Engineering Department, Faculty of Engineering, Aswan University, Aswan 81542, Egypt

a r t i c l e i n f o

Article history:
Received 19 April 2014
Received in revised form
9 October 2014
Accepted 20 March 2015
Available online 22 April 2015

Keywords:
Data-parallel applications
VLIW
Vector processing
VHDL
Performance evaluation

a b s t r a c t

This paper proposes a new processor architecture called VVSHP for accelerating data-parallel applica-
tions, which are growing in importance and demanding increased performance from hardware. VVSHP
merges VLIW and vector processing techniques for a simple, high-performance processor architecture.
One key point of VVSHP is the execution of multiple scalar instructions within VLIW and vector
instructions on unified parallel execution datapaths. Another key point is to reduce the complexity of
VVSHP by designing a two-part register file: (1) shared scalar–vector part with eight-read/four-write
ports 64�32-bit registers (64 scalar or 16�4 vector registers) for storing scalar/vector data and
(2) vector part with two-read/one-write ports 48 vector-registers, each stores 4�32-bit vector data.
Moreover, processing vector data with lengths varying from 1 to 256 represents a key point for reducing
the loop overheads. VVSHP can issue up to four scalar/vector operations in each cycle for parallel
processing a set of operands and producing up to four results to be written back into VVSHP register file.
However, it cannot issue more than one memory operation at a time, which loads/stores 128-bit scalar/
vector data from/to data memory. The design of our proposed VVSHP processor is implemented using
VHDL targeting the Xilinx FPGA Virtex-5 and its performance is evaluated.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Computer architects have taken many different approaches to
high-performance computing by exploiting parallelism. The pipelining
technique is the simplest way to take the advantage of parallelism
among instructions, see [1] for more details. It exploits instruction-
level parallelism (ILP) by overlapping instruction execution to improve
the performance. The use of pipelining technique can achieve an ideal
performance of one operation per clock cycle. To further improve the
performance, parallel processing of multiple operations per clock cycle
would be used. Thus, multiple-issue scalar processors like superscalar
and very-long instruction word (VLIW) processors fetch multiple
scalar instructions and allow multiple operations to be issued in a
clock cycle [2–4]. Superscalar and VLIW implementations of traditional
scalar instruction sets are sharing in the ability to execute multiple
operations simultaneously on parallel execution units. However, the
parallelism is explicit in VLIW instructions and must be discovered by
hardware at run time in superscalar processors. Therefore, for high
performance, VLIW implementations are simpler and cheaper than

superscalars because of further hardware simplifications. However,
VLIW architectures require more compiler support as discussed in [5].

In addition to ILP, the exploitation of data-level parallelism (DLP)
can improve the performance furthermore. DLP can be expressed
using vector instruction set and processed on parallel execution
units [6]. Traditionally, vector processors fetch a single vector
instruction (v operations) and issue multiple operations per clock
cycle. Therefore, vector instruction set architecture (ISA) reduces
the semantic gap between programs and hardware [7]. Program-
mers can express parallelism to hardware using vector instructions,
otherwise, vector compilers did ultimately get good at synthesizing
vector operations even when they were not explicitly expressed.
Thus, the generated code says something higher-level, and then the
processor manipulates the simple operations on its own [5]. Since
the use of vector ISA leads to expressing programs in a more concise
and efficient way (high semantic), encoding parallelism explicitly,
and using simple design techniques (heavy pipelining and func-
tional unit replication) that achieve high performance at low cost,
vector processors remain the most effective way to exploit DLP in
data-parallel applications [8–10].

On multiple execution units, this paper proposes a new proces-
sor architecture called VVSHP for accelerating data-parallel applica-
tions. VVSHP merges VLIW and vector processing techniques for a
simple, high-performance processor architecture. VVSHP exploits
both of ILP and DLP. In addition to pipelining technique, VVSHP uses

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/mejo

Microelectronics Journal

http://dx.doi.org/10.1016/j.mejo.2015.03.012
0026-2692/& 2015 Elsevier Ltd. All rights reserved.

n Correspondence address: Computer Science and Information Department,
Community College, Taibah University, Al-Madinah Al-Munawwarah 2898, Saudi
Arabia.

E-mail addresses: mossol@ieee.org, mossol@yahoo.com

Microelectronics Journal 46 (2015) 637–655

www.sciencedirect.com/science/journal/00262692
www.elsevier.com/locate/mejo
http://dx.doi.org/10.1016/j.mejo.2015.03.012
http://dx.doi.org/10.1016/j.mejo.2015.03.012
http://dx.doi.org/10.1016/j.mejo.2015.03.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mejo.2015.03.012&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mejo.2015.03.012&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mejo.2015.03.012&domain=pdf
mailto:mossol@ieee.org
mailto:mossol@yahoo.com
http://dx.doi.org/10.1016/j.mejo.2015.03.012


VLIW architecture (wide-issue static scheduling) to exploit ILP by
processing multiple independent scalar instructions concurrently
on parallel execution units. DLP is expressed by vector instructions,
which are processed on the same parallel execution units of the
VLIW architecture. Thus, on unified parallel datapaths, our proposed
VVSHP processes multiple scalar instructions packed in VLIW or
vector instructions by issuing up to four scalar/vector operations in
each cycle. However, it cannot issue more than one memory
operation at a time, which loads/stores 128-bit scalar/vector data
from/to data memory. Four 32-bit results can be written back into
VVSHP register file per clock cycle. To reduce the complexity of
VVSHP, this paper designs a two-part register file: (1) shared scalar–
vector part with eight-read/four-write ports 64�32-bit registers
(64 scalar or 16�4 vector registers) for storing scalar/vector data
and (2) vector part with two-read/one-write ports 48 vector-
registers, each stores 4�32-bit vector data. Moreover, to reduce
the loop overheads, VVSHP processes vector data with lengths
varying from 1 to 256. The design of our proposed VVSHP processor
is implemented using VHDL targeting the Xilinx FPGA Virtex-5,
XC5VLX110T-3FF1136 device. Moreover, the performance of VVSHP
is evaluated on vector/matrix kernels.

Data-parallel applications have several different portions of
their runtime that can be accelerated to differing degrees [11–13].
On VVSHP, applications can be divided into scalar (unvectorizable)
and vectorizable parts. Vectorizable parts can be accelerated on
parallel execution units using vector ISA. On the other hand, scalar
parts may be accelerated on multiple execution units using VLIW.
The compiler and not the hardware is responsible for identifying
groups of independent operations and packaging them together
into a single VLIW instruction [14,15]. Thus, on VVSHP, not only
vectorizable parts are speeded up but also scalar parts. According
to Amdahl's Law [16] that governs the speedup of using parallel
processing on a problem versus using sequential processing, the
performance improvement to be gained from VVSHP by merging
VLIW and vector processing techniques is better than either VLIW
or vector processors. VVSHP increases the faster mode fraction by
parallel processing VLIW/vector instructions on unified multiple
execution units.

The rest of this paper is organized as follows. Some related work
are discussed in Section 2. Section 3 describes the architecture of
our proposed VVSHP processor. Section 4 presents the FPGA
implementation of VVSHP on Xilinx Virtex-5. The performance of
our proposed VVSHP is evaluated in Section 5. Finally, Section 6
concludes this paper and gives directions for future work.

2. Related work

Data-parallel applications are growing in importance and
demanding increased performance from hardware [12,13]. Many
architectures have been proposed in the literature to accelerate
data-parallel applications. This section emphasizes on the use of
vector processing to exploit DLP to accelerate data-parallel appli-
cations, even though other techniques such as the use of matrix
processing can be used. Examples of using matrix processing for
accelerating data-parallel applications include MOM (Matrix
Oriented Multimedia) [17], MatRISC (Matrix RISC) [18], ADRES
[19], Trident [20], matrix coprocessor for computing matrix product
[21], SMP [22,23], and matrix unit for multi-core processors [24].

2.1. Adding vector unit to scalar processors

Asanovic [11] proposed Torrent-0 (T0), which is a single chip
fixed-point vector microprocessor designed for multimedia,
human-interface, neural network, and other digital signal proces-
sing tasks. T0 extends a MIPS-II core with a high performance

vector coprocessor and 128-bit wide external memory interface.
The vector coprocessor is structured as eight parallel lanes, where
each lane contains a portion of the vector register file and one
pipeline for each vector function unit.

Quintana et al. [25] proposed adding a vector unit to a super-
scalar core, as a way to scale superscalar processors. Their archi-
tecture has a vector register file that shares functional units both
with the integer datapath and with the floating-point datapath.
Moreover, it has a high performance cache interface that delivers
high bandwidth to the vector unit at a low cost and low latency. The
extended vector unit achieves high performance for numerical and
multimedia codes with minimal impact on the cycle time of the
performance of integer codes.

Espasa et al. [26] proposed Tarantula, which is an aggressive
floating-point machine targeted at technical, scientific and bioinfor-
matics workloads. Tarantula adds to the Alpha EV8 core a vector
unit capable of 32 double-precision floating-point operations
(FLOPs) per cycle. The vector unit fetches data directly from a 16
MByte L2 cache with a peak bandwidth of 64�64-bit per cycle.
Tarantula achieves an average speedup of 5x over EV8, out of a peak
speedup in terms of FLOPs of 8x.

Kozyrakis [27] proposed a scalable processor (VIRAM) based on
vector architecture and IRAM technology. VIRAM has four basic
components: MIPS scalar core, vector coprocessor, embedded
DRAM main memory, and external IO interface. Enormous, high
bandwidth memories (built using DRAM technology) are placed
on the processor die to increase the main memory bandwidth.
Thus, vector processors with dedicated and integrated memories
are good candidates for data-parallel workloads in the embedded
systems.

Gebis [28] presented the Virtual Vector Architecture (ViVA),
which combines the memory semantics of vector computers with a
software-controlled scratchpad memory in order to provide a more
effective and practical approach to latency hiding. ViVA adds vector-
style memory operations to existing microprocessors but does not
include arithmetic datapaths; instead, memory instructions work
with a new buffer placed between the core and second-level cache.
ViVA gave significant benefit for a variety of memory access patterns
like, corner turn and sparse matrix–vector multiplication kernels,
without relying on a costly hardware prefetcher.

2.2. Combining vector with multithreading/VLIW/superscalar
techniques

Krashinsky [29] proposed a vector-thread (VT) architecture as a
performance-efficient solution for all-purpose computing. The VT
architectural paradigm unifies the vector and multithreaded com-
pute models. VT provides the programmer with a control processor
and a vector of virtual processors. The control processor can use
vector-fetch commands to broadcast instructions to all the vector
processors or each one can use thread-fetches to direct its own
control flow. VT chip, including a scalar RISC control processor and a
four-lane vector-thread unit, has 7.1 million transistors, which is
complex to implement on many-core technology.

Batten [30] explored a new approach to building data-parallel
accelerators that is based on simplifying the instruction set, micro-
architecture, and programming methodology for a VT architecture.
Batten proposed Maven, which is a malleable array of VT engines
that can scale from a few to hundreds of flexible and efficient VT
cores tiled across a single chip.

Rivoire et al. [31] proposed vector lane threading (VLT), an
architectural enhancement that allows idle vector lanes to run
short-vector or scalar threads. To achieve higher performance,
both data-level and thread-level parallelism can be exploited on
VLT. It multithreads the vector unit to increase the utilization of
vector lanes when running low-DLP code. It partitions the vector

M.I. Soliman / Microelectronics Journal 46 (2015) 637–655638



Download English Version:

https://daneshyari.com/en/article/547011

Download Persian Version:

https://daneshyari.com/article/547011

Daneshyari.com

https://daneshyari.com/en/article/547011
https://daneshyari.com/article/547011
https://daneshyari.com

