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Abstract 

In order to obtain a modelling and prediction of tool wear in grinding operations, a Cognitive System has been employed to observe the 
dressing need and its trend. This paper aims to find a methodology to characterize the condition of the wheel during grinding operations and, by 
the use of cognitive paradigms, to understand the need of dressing. The Acoustic Emission signal from the grinding operation has been 
employed to characterize the wheel condition and, by the feature extraction of such signal, a cognitive system, based on Artificial Neural 
Networks, has been implemented. 
© 2016 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Grinding operations are abrasive processes which involve 
material removal. The material removal is carried out by the 
action of abrasive particles, positioned on a grinding wheel 
[1]. The grinding operation is one of the most common of all 
metalworking operations; even if abrasive processes are 
capable of high material removal rates, they are generally 
employed as a finishing operation. 

Grinding processes are directly influenced by many 
factors, such as the workpiece, machine, grinding wheel and 
process settings. The monitoring and control of the process, 
not only allows to keep under control the process itself, but 
allows to improve the process performance and to avoid 
scraps and to reduce defects to a minimum possible to ensure 
high accuracy and quality [2]. 

The grinding wheel plays an important role in both the 
surface roughness and the material removal. The classification 
of the grinding wheel as “sharp” (with cutting capacity) or 
“dull” (with loss of cutting capacity) is fundamental to 
achieve the best performance of any abrasive operation [3, 4]. 
In order to understand the wheel conditions and to estimate 

and approximate the wheel life cycle time, as accurate as 
possible, before the regeneration of the wheel through a 
dressing operation, the grinding operation itself was 
monitored. Through a sensor monitoring system, the Acoustic 
Emission (AE) signal was acquired and statistics derived from 
this signal. The combination of these statistics with the 
working parameters of the grinding operation will be 
employed to feed a cognitive decision making support system, 
such as an Artificial Neural Network (ANN) system, to 
determine the wheel condition at each grinding pass and to 
predict and estimate the dressing need. 

Understanding and estimating the wheel life cycle before a 
dressing pass is fundamental to reduce the time and cost of the 
grinding operation itself, by minimizing the number of 
grinding passes without material removal and, furthermore, to 
avoid defects and to optimize the whole operation time. 

Cognitive systems, such as Genetic Algorithms (GAs) and 
Artificial Neural Networks, are increasingly employed to 
optimize any kind of process and in the planning of any kind 
of engineering system [5 – 14]. ANNs are widely used in 
supporting the decision-making system of various 
manufacturing processes, such as lost wax casting processes, 

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientifi c committee of the 10th CIRP Conference on Intelligent Computation in Manufacturing Engineering



306   Doriana M. D’Addona et al.  /  Procedia CIRP   62  ( 2017 )  305 – 310 

to predict the tool-wear in milling and turning operations and 
to predict the dressing wear of grinding operations [8]. 

This research work focuses on a methodology for the 
prediction of the wheel wear and dressing need in cylindrical 
internal grinding operations. The aim of this study is, 
therefore, to supply a robust tool for the detection and 
prediction of the best time for the dressing operation, in order 
to minimize time for stops and to optimize the whole grinding 
operation. 

2. Description of the grinding and dressing operation 

The grinding operation were carried out at the Ar.Ter. SrL 
factory plant. The worked material was an AISI316; the 
performed operation was a cylindrical internal grinding, 
executed with the parameters indicated in Table 1, cooled with 
a water based coolant mixed to oil (4% oil, 96% water): 

Table 1. Working parameters for each Test. 

Parameters Test 1 Test 2 Test 3 

Material AISI316 AISI316 AISI316 

Feed rate [m/s] 0.00875 0.00875 0.00875 

Speed of the spindle [rpm] 440 440 440 

Speed of the piece [rpm] 40 40 40 

Depth of cut per pass [mm[ 0.03 0.03 0.05 

Initial piece diameter [mm] 245.11 324.60 326.55 

Required diameter 245.40 324.90 326.90 

# of Passes 18 16 9 

 

 
Fig. 1. Internal grinding operation at Ar.Ter. SrL. 

 

Fig. 2. Dressing operation at Ar.Ter. SrL. 

A parameter, which has been monitored and kept under 
control during the dressing operation of the wheel, was the 
overlap ratio [15]. The overlap ratio, Eq. 1, is a parameter 
which correlate the width of action of the dresser, bd, which 
was assumed as a constant in each Test, and the dressing feed 
rate per wheel revolution, Sd, which was constant during each 
Test. From all of this, it comes that the overlap ratio, Ud, is 
constant for assumption  

 (1) 

The working piece was a CAGE16 component for Gas and 
Oil distribution pipes. Each piece was worked with the same 
conditions. The signal acquisition was performed on three test 
acquisition. The tests were carried out on a real production 
piece and, because of this, they had to be set with real 
production parameters, to avoid any scrap or defect. Basically, 
the test number three differs for the lowest number of passes, 
due to the deepest depth of cut set. The diameter of the 
working piece may also change, according to the production at 
Ar.Ter. SrL (Fig. 1). Starting from an initial diameter as the 
piece reached the working station for grinding, a material 
removal operation at the internal diameter was needed to set 
the piece at the data sheet specification. The abrasive grinding 
wheel, which was used for the material removal, was a Norton 
Silicon Carbide (SiC) 38A60LVS. The dressing passes (Fig. 
2) were carried out by mean of a DIAVIK natural diamond at 
1.5 carat weight; the diamond was mounted on a turned CM1 
steel tool and the depth of cut was set at 0.03 mm. The feed 
rate of the wheel at 0.00875 m/s, turning at 440 rpm, without 
coolant. The wheel dimension was d1-3x50x65 mm, where d1-3 
was the diameter of the wheel measured for each of the three 
tests that varied from a maximum of 176 mm to a minimum 
value of 126 mm. The peripheral speed varied according to the 
wheel diameter used of each test and it oscillated from 4.05 
m/s to 2.90 m/s. 

3. Signal acquisition 

The acoustic emission signal was acquired using the 
Montronix BV100™ broadband vibration sensor, provided 
with two channels to measure both the vibrations and the high 
frequency acoustic emission (AE) signals. The acoustic 
emission signal was acquired at 10 kHz. The analogue 
acoustic emission and sensor signals was then amplified by a 
Montronix TSVA4G amplifier. The specifications of the AE 
amplifier are reported in Table 2. The use of AE sensor 
signals has been widely employed to detect many phenomena 
in manufacturing processes, due to the working wide sensor 
bandwidth from 100 to 900 kHz [16, 17]. The AE sensor 
signals have as input a preamplifier with a high input 
impedance and low output impedance. Furthermore, a root 
mean square (RMS) converter, a gain selection unit, and 
filters are embedded in the preamplifier. In order to pass by 
this acquisition problem, the Montronix BV100™ was set to 
acquire RMS signals. The gain set for the acoustic emission 
RMS (AERMS) signals is equal to 10 to properly visualize the 
signals without exceeding the maximum threshold of 10 V 
imposed by the data acquisition (DAQ) board. 
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