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Abstract 

This work presents an approach to determine relevant energy efficiency and productivity KPIs of machining processes based on a real-time 
interpretation of sensor data and machine control data. A comparison of the actual power consumption during machining with an energetic model 
of the load-free condition enables the calculation of energetic efficiency and primary processing time. The approach was tested on a CNC turning 
and milling center equipped with power meters and compressed air sensors. Sensor data as well as relevant machine control data are read, 
processed and recorded via SCADA software in order to automatically calculate certain KPIs. 
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1. Introduction and motivation 

As manufacturing industries are facing economic challenges 
due to increasing global competition, they continually need to 
increase productivity while reducing manufacturing costs. The 
industrial sector is a substantial consumer of energy and other 
resources and thus causes severe environmental impact [1-3]. 
Therefore, ambitions to reduce the energy intensity of 
manufactured products are suitable to enhance both economic 
competitiveness and environmental sustainability. 

In recent years, different legislative and normative measures 
have been taken in order to reduce industrial energy 
consumption. ISO 50001, for instance, provides a systematic 
approach to continuously improve energy performance and 
specifies requirements for process and equipment design, 
measurement and documentation [4]. EN 16231, on the other 
hand, suggests a methodology for the evaluation of energy data 
in order to determine the energy efficiency of certain units 
(such as production systems) enabling energy performance 
monitoring and a comparison with other units [5]. Energy 
efficiency benchmarking is a suitable way to reveal 
optimization potentials concerning energy consumption. 

Utilized in great quantities, machine tools constitute 
substantial industrial energy consumers [6, 7]. Therefore, a 
reduction of machine tool energy demand can significantly 

improve the environmental performance of manufacturing 
processes and thus the CO2 footprint of consumer products. 

A traditional product lifecycle consists of three stages: 
manufacturing, use and end of life. For a machine tool itself, 
the use phase is the most energy intensive phase causing 60% 
to 90% of CO2 emissions during its lifecycle [8]. 

Recently, a draft standard for the environmental evaluation 
of machine tools during their use phase was introduced, 
presenting a methodology for a reproducible quantification of 
energy supplied to the machine in different operating 
conditions [9]. Gontarz et al. presented a modular configuration 
approach for machine tools based on multichannel 
measurements in order to improve energy efficiency and enable 
total cost of ownership (TCO) calculations [10]. 

Several studies have been carried out in order to model the 
energy consumption of machine tools and thus to determine the 
environmental impact of goods produced [11-16].  

The machining time is a key influence factor for the energy 
demand of machine tools, especially such with high base load 
(i.e. machines with large peripherals such as hydraulic, 
machine cooling, exhaust and cooling lubricant systems). 

Various studies have shown that high material removal rates 
decrease machine tool overall energy consumption when           
keeping the volume of removed material constant due to 
decreasing machining time [13, 17, 18]. 
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Further optimization potential arises from a proper choice of 
the tool path strategy during machining [12, 18, 19]. 

As a conclusion, it is of high importance to use optimal 
machining procedures and parameters in combination with 
performant tooling systems in order to minimize cycle times 
and thus energy consumption. However, over the course of 
machining, the process performance might change due to tool 
wear, suboptimal machine settings or operating errors. Hence, 
it is expedient to monitor certain performance indicators over 
time in order to assess and compare different processes. 

A typical energy performance indicator (EnPI) used for 
benchmarking within or between units is the specific energy 
consumption (such as energy per unit produced) [5]. Emerging 
trends in such indicators can not only help to validate changes 
in energy efficiency but also act as evidence for issues like 
process plan deviations and changes in process stability or 
quality. 

Progress in the field of sensor and data acquisition 
technologies enables real-time acquisition and interpretation of 
machine tool data. Vijayaraghavan et al. developed an 
automated machine tool energy monitoring system using 
MTConnect and applied event stream processing techniques to 
automate the analysis of energy consumption [20]. Hu et al. 
introduced an on-line approach for energy efficiency 
monitoring of machine tools via spindle power measurement 
based on power balance calculations [21]. 

Shin et al. presented a predictive analytics model for 
machining processes using neural networks [22]. In their work, 
big data infrastructure was fed with STEP-NC plan data and 
MTConnect machine monitoring data to derive an analytic 
model for the machine tool power consumption depending on 
cutting parameters. 

Bhinge et al. also introduced a machine monitoring system 
architecture based on data acquisition via MTConnect [23]. A 
data-driven energy prediction model using Gaussian process 
regression was developed using power consumption sensor 
data as well as operating data obtained from NC-code and 
cutting simulation. 

Eberspächer et al. presented a model and signal-based 
power consumption monitoring concept and approaches to 
reduce the power consumption [24]. In their work, machine 
control data read via OPC UA and additional sensor data are 
used as input for consumption simulation models to provide the 
machine operator with detailed power consumption and 
distribution data. 

This work presents a different machine monitoring approach 
and a methodology to determine relevant energy efficiency and 
productivity key performance indicators (KPIs) of machining 
processes based on real-time interpretation of sensor data and 
machine control data. A comparison of the actual power 
consumption during machining with an energetic model of the 
load-free condition enables the calculation of the energetic 
process efficiency and the primary processing time. The 
approach was tested on a CNC turning and milling center 
equipped with power meters and compressed air sensors. 
Sensor data as well as relevant machine control data are read, 
processed and recorded via SCADA software and certain KPIs 
are automatically calculated, visualized and stored. 

2. Experimental setup 

In the framework of the research project “eco2production”, 
which focused on the development of methods and tools to 
enhance energy efficiency and productivity of producing SMEs 
[25], an energy monitoring and control system was 
implemented in a pilot factory equipped with machine tools. 
The electric power and compressed air consumption of these 
machines and certain sub-components as well as peripherals is 
recorded and visualized. Furthermore, machine control data 
acquisition was implemented for one of the machine tools. The 
used SCADA software system, SIMATIC WinCC Open 
Architecture, supports different communication protocols and 
features a SQL-based database. 

Fig. 1 shows a diagram of the experimental setup for sensor 
and machine control data acquisition for the CNC turning 
center EMCO MAXXTURN 45. The machine tool features a 
movable counter spindle as well as a tool turret with driven 
tools (for milling and drilling operations) and thus seven 
individual drives. The machine has a power rating of 25 kVA 
and main spindle and counter spindle drive capacities of 13 and 
10 kW, respectively. 

 
Figure 1. Diagram of the experimental setup. 

Active power is internally calculated by SENTRON PAC 
4200 power monitoring devices from measured electric voltage 
and current signals. The according data are transferred to the 
SCADA system via MODBUS TCP protocol. 

Compressed air volumetric flow and pressure are measured 
with FESTO SFAB and SDE1 sensors, respectively. The 
sensor data are read by SIMATIC S7-1200 PLC and transferred 
to the SCADA system using TCP/IP based S7 messaging. The 
same S7 protocol is used to read drive data (such as active 
power consumption and speed) from the SINUMERIK 840D sl 
machine control via according data block addresses. 

For both communication protocols (MODBUS TCP and 
S7), data transmission is software-driven with polling cycles of 
100 ms. The realized temporal resolution of signals read from 
the machine control and PLC is around 100 ms on average. The 
power monitoring devices, however, deliver new data in a 
mean interval of around 200 ms. 
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