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Abstract 

Thermo-elastic effects are one of the major reasons for positioning errors in machine tools. Next to friction and waste heat from drives, the heat 
exchange with the machine’s surroundings influences the temperature field inside the machine tool significantly. The thermal parameters 
necessary to describe this heat transfer can be obtained through computational fluid dynamics (CFD) simulations. This paper presents a new 
method aimed at decoupling these CFD simulations from the thermo-elastic simulations in order to provide the heat transfer parameters quickly 
and efficiently for transient environmental conditions. This is done by defining a suitable set of load scenarios for the CFD simulations, 
clustering the resulting parameters with radial basis functions and interpolating them using characteristic diagrams. 
© 2016 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Machine tool deformation occurs during operation due to 
waste heat from motors and frictional heat from guides, joints 
and the tool, while coolants act to reduce this influx of heat. 
Additional thermal influences come from the machine tool's 
environment and foundation. This leads to inhomogeneous, 
transient temperature fields inside the machine tool which 
displace the tool center point (TCP) and thus reduce 
production accuracy and finally the product quality [1]. 

Next to approximation strategies such as characteristic 
diagram based [2] and structure model based correction [3], 
the most reliable way to predict the TCP displacement is via 
thermo-elastic finite element (FE) simulation. A CAD model 
of a given machine tool serves as the basis for this approach. 
On it an FE mesh is created. After establishing the partial 
differential equations (PDEs) describing the heat transfer 
within the machine tool and with its surroundings, FE 
simulations are run in order to obtain the temperature fields of 
the machine tool for specified load regimes. Using linear 
thermo-elastic expansion, the deformation can then be 

calculated from each temperature field and the displacement 
of the TCP read from this deformation field, see [4]. 

The accuracy of this latter approach depends on the correct 
modelling of the heat flux within the machine tool and the 
exchange with its surroundings. In order to calculate the 
correct amount of heat being exchanged with the 
environment, one may use known parameters from well-
established tables. However, if the surrounding air is in 
motion or otherwise changing, computational fluid dynamics 
(CFD) simulations are required to accurately determine these 
transient parameters. This two-step approach makes realistic 
thermo-elastic simulations particularly complicated and time-
consuming. Methods aiming at real-time thermo-elastic 
simulations based on model order reduction must therefore 
rely on the inaccurate predetermined parameter sets [5]. This 
could be helped if all the necessary CFD simulations could be 
run in advance and supplied to the thermo-elastic models 
when they are needed. This paper presents such an approach 
which employs high-dimensional characteristic diagrams. 

Characteristic diagrams are well suited for mapping 
combinations of air flow parameters (e.g. air temperature, 
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flow direction and velocity, air pressure, etc.) onto the heat 
transfer coefficients (HTCs) which describe convection on the 
surface of the machine tool.  

To reduce the data needed to train these characteristic 
diagrams and to make the large FE meshes more manageable, 
clustering algorithms can be used to group nodes with similar 
thermal behavior. Here radial basis functions (RBF) will be 
used for the clustering. Similar to characteristic diagrams, 
RBFs can be used for interpolation in order to approximate 
high-dimensional real-valued functions [6]. 

The paper starts by introducing radial basis functions and 
two types of clustering. Then characteristic diagrams will be 
introduced and with it, the decoupling of fluid and thermo-
elastic simulations explained. A sample U-shaped geometry 
will be used to validate the approach numerically.  

 
Nomenclature 

N  number of sampling points  
xi           sample point 
ϴi(x)              radial basis function 
ξ                       ansatz function 
r                       distance of x and xi 
p                       polynomial function 
πm                         polynomial degree 
M                     number of polynomial function 
βRBF, βPOLY       unknown coefficients 
y              right hand side 

   heat transfer coefficient 
thermal conductivity of the fluid 

L                      characteristic length 
Nu                    Nusselt number, dependent on: 
Re                    Reynolds number 
Pr                     Prandl number 

2. Interpolation-approach for thermal parameters 

2.1. Basics of radial basis functions 

The main difficulty in the use of radial basis functions [7] 
is in solving an interpolation problem of N arbitrary sample 
points x1, x2…xN in Rd with given values y1, y2…yN in R to 
find a function f: Rd→R, fulfilling the interpolation condition 

 
ii yxf )(  for i=1…N.       (1) 

 
The first step is to find an ansatz for (1). For this, some 

basic functions will be introduced. 
A function ϴi: Rd→R is a radial basis function if a function 

ξ: R→R exists, which satisfies ϴi(x)=ξ(||x-xi||) for a fixed 
point xi in Rd. Commonly used types of RBF ansatz functions 
ξ(r) with r=||x-xi|| are 

Gaussian: )exp()( 2rr  for 0             (2) 
 

Multiquadric:                                                                                                                                                               (3)  
                                                                    

Polyharmonic spline:       
if k is odd                          (4) 

    if k is even                              
                          
Thin plate spline: )log()( 2 rrr                            (5) 

Further variations, especially for large data sets are RBFs 
with compact support, e.g. “Wendland functions” [6]. Such 
basis functions lead to a sparse interpolation system.  

Now let such a radial basis function ϴi be defined in every 
sample point xi, i=1…N. The usual ansatz for an interpolation 
function is: 

                                            (6) 
 

 

With (1), this ansatz leads to the linear equations 
 

i=1…N          (7) 
 
 

which can be written as a linear system: 
 
                                                     (8) 

The components of (8) are defined by the system matrix 
Φ:=[ϕj(xi)] for i,j=1…N, the vector βRBF=[β1,β2…βN]T of the 
unknown coefficients and the right hand side y=[y1,y2…yN]T.  
The system matrix Φ is obviously symmetric. In [8], it is 
shown that Φ also positive definite for a vast variety of RBFs. 

The sole disadvantage of the RBF ansatz is that a large 
number of sample points are needed to get a sufficiently exact 
approximation of a constant or linear function. One possible 
way to cope with this is to add a polynomial part p(x) 

  
                            (9) 
 
 

The d-variate polynomial p πm(Rd) of degree at most m is 
defined as 

 
                         (10) 
 
 

with M=dim(πm(Rd)) and basis polynomials pj for j=1…M. 
Consequently, this ansatz has (N+M) unknown coefficients, 
while the interpolation system (1) consists of only N 
equations, therefore an added condition is imposed 

 
 for all p πm(Rd)           (11) 
 
 

This leads to a linear matrix system of dimension (N+M) 
  
                                                                         
                                                                                                       (12)                                      
 
A simple and good choice for πm(Rd) are linear 

polynomials, e.g. 
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