ELSEVIER

Contents lists available at ScienceDirect

Catalysis Today

journal homepage: www.elsevier.com/locate/cattod

Passive-ammonia selective catalytic reduction (SCR): Understanding NH₃ formation over close-coupled three way catalysts (TWC)

Christopher D. DiGiulio^a, Josh A. Pihl^b, James E. Parks II^b, Michael D. Amiridis^{a,1}, Todd J. Toops^{b,*}

- ^a University of South Carolina, Department of Chemical Engineering, Swearingen Engineering Center, 301 Main St., Columbia, SC 29208-4101, USA
- ^b Fuels, Engines and Emissions Research Center, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, USA

ARTICLE INFO

Article history: Received 24 September 2013 Received in revised form 11 January 2014 Accepted 13 January 2014 Available online 12 February 2014

Keywords: Three way catalyst (TWC) Selective catalytic reduction (SCR) Passive-NH3 SCR

ABSTRACT

NH₃ formation was examined under steady-state and lean/rich cycling conditions over four commercial catalysts including: (1) a Pd-only, high precious metal loading (HPGM) three-way catalyst, (2) a Pd/Rh + CeO₂, low precious metal loading (LPGM) three-way catalyst, (3) a combination of a HPGM and a LPGM (Dual-Zone) catalyst and (4) a lean NO_X trap (LNT) catalyst. The goal of this work was to evaluate these catalysts for their potential use as the upstream component in a passive-NH₃ SCR configuration. NH₃ formation during steady-state operation was found to be dependent on the air-to-fuel ratio (AFR), temperature and catalytic formulation used. While all of the formulations produced significant amounts of NH₃ when operated under sufficiently rich conditions, in general the steady-state NH₃ yield decreased in the following order: HPGM ≥ Dual-Zone » LPGM ≈ LNT. Under lean-rich cycling conditions that would be required for this mode of operation, lower air-to-fuel ratios were required to generate the same amount of NH₃ as under steady-state conditions. Results obtained with the LNT catalyst demonstrated that at moderate temperatures (i.e., $275-500\,^{\circ}\text{C}$) NO_X storage capacity significantly increased the amount of NH₃ produced in relation to the amount of NO_X slipped. Consequently, the addition of an "optimum" amount of NO_X storage capacity in addition to well-controlled lean-rich timing, could significantly improve the performance of the three-way catalyst used as the upstream component in a passive-NH3 SCR configuration. When the CO. C₃H₆ and N₂O concentrations in the effluent were considered in addition to the NH₃ formation, an optimum temperature of 400-450 °C was determined for the operation of these catalysts. © 2014 Elsevier B.V. All rights reserved.

1. Introduction

Lean-burn engines are more fuel efficient and produce less $\rm CO_2$ than traditional, stoichiometric-burn engines [1–3]. Full commercial implementation of lean-burn engines, however, requires the development of cost effective catalysts capable of meeting current emissions regulations under lean-burn exhaust conditions, which still represents a major technical challenge. Since the late 1970s, three-way catalysts (TWC) have been employed for the simultaneous reduction of nitrogen oxides ($\rm NO_X$) and the oxidation of unburned hydrocarbons and carbon monoxide ($\rm CO$) present in the exhaust of stoichiometric burn engines. However, these TWCs only sufficiently remediate pollutants if operated in a very narrow region

near the stoichiometric combustion regime and exhibit very low NO_X conversion if operated under the much higher O_2 concentrations encountered in lean-burn engine exhausts [4]. Two existing solutions for the reduction of NO_X in this case include lean NO_X trap (LNT) and NH_3 -selective catalytic reduction (NH_3 -SCR) catalysts, where operation of these systems has been summarized in recent reviews [4–9].

Briefly, LNTs are designed for operation in periodic lean (\sim 60 s) and rich (\sim 5 s) environments. During lean periods, NO_X is oxidized to NO₂ over the precious metal component of these catalysts (e.g., Pt, Pd, Rh) and then is subsequently stored in the form of nitrites or nitrates on an alkali or alkali-earth storage component (e.g., Ba) [10,11]. The storage component eventually becomes saturated with NO_X and a brief rich period must be employed to convert the stored NO_X to N₂ and regenerate the storage capacity of the catalyst. Typical LNT formulations contain relatively high weight loadings of Pt (\approx 2–3 wt%), with smaller amounts of Pd and/or Rh also present, supported on a Ba-containing high surface area support, typically γ -Al₂O₃ [12,13]. Conversely, NH₃-SCR catalysts do

^{*} Corresponding author. Tel.: +1 865 946 1207. *E-mail addresses*: amiridis@sc.edu (M.D. Amiridis), toopstj@ornl.gov, tjtoops@gmail.com (T.J. Toops).

¹ Tel.: +1 803 777 7294.

not rely on a cycling strategy, but instead operate through the selective reaction of NH₃ with NO_X in the presence of excess oxygen, with NH₃ typically provided via on-board storage of urea—which is rapidly hydrolyzed to NH3 under automotive exhaust conditions [5]. SCR catalytic formulations for automotive applications are usually either V₂O₅-WO₃/TiO₂ type or Cu/Fe exchanged zeolites [4,5,7,9]. In Europe, V₂O₅-WO₃/TiO₂-based formulations were introduced in 2005 for heavy-duty diesel applications. However, the high activity for SO₂ oxidation of these catalysts, the toxicity of volatile vanadia species (>650 °C) and their poor activity and selectivity above 550 °C, generally make the zeolite-based formulations more attractive for lean-gasoline applications [9]. Furthermore, zeolite-based catalysts can also store significantly more NH3 than their V₂O₅-based counterparts [14,15]. Initially, commercial application of zeolite-based SCR catalysts was limited because of poor hydrothermal stability, but recent advances in zeolite technology have led to the discovery of hydrothermally stable zeolites that are active over a broad temperature range [16,17]. Stabilization of the zeolite structure using a metal oxide coating has also been demonstrated [18].

Both LNT and NH3-SCR technologies suffer from different, but significant drawbacks. For example, LNT catalysts require high platinum group metal (PGM) loadings, resulting in a significant cost per catalyst. They are also particularly susceptible to sulfur poising, requiring periodic, high-temperature regenerations schemes, which eventually lead to partial degradation of LNT performance [7,8]. NH₃-SCR catalysts are less expensive, but the dosing system required to deliver urea to the exhaust stream adds to the total cost of the exhaust system and may represent a technical challenge for smaller gasoline engines. These systems also require on-board storage of urea (e.g., a 30-litre tank) and customer resistance to an additional "fuel" tank, the lack of existing urea "fueling" infrastructure, and a relatively high freezing point (approx. -12 °C) and long-term stability issues (>32 °C) for urea are topics of considerable concern. Additionally, in lean-burn gasoline applications the potential for high NOx outputs would require an even larger urea tank than its diesel counterpart [19]. Despite these problems, NH₃-SCR is emerging as the key technology for large diesel vehicle applications, while LNT catalysts have been favored for smaller engines.

Recently, researchers at GM have demonstrated a new technology referred to as the "passive-ammonia" or "urealess" SCR approach [1-3,20-22]. As in the case of LNT systems, the passive-NH₃ SCR approach is based on periodic lean-rich cycling, but does not include an LNT catalyst. Instead, a TWC is used to generate NH₃ during periods of rich operation. The NH₃ thus generated is subsequently stored on a downstream, under-floor SCR catalyst. After a sufficient amount of NH₃ has been stored, the engine switches back to lean operation and the stored NH₃ is used to reduce NO_X that slips un-reacted from the upstream TWC. This is particularly attractive in gasoline applications, because it allows the vehicle to periodically resort to stoichiometric operation when necessary. Ultimately, the successful operation of the passive-NH3 SCR approach relies on the following factors: (1) robust and selective NH₃ generation over the TWC, (2) significant storage of NH₃ on the downstream SCR catalyst, (3) efficient utilization of stored NH₃ for NO_X reduction and (4) optimization of the required lean/rich engine timing, with a higher ratio of lean to rich time increasing efficiency gains.

Of these, the selective generation of NH₃ over the TWC is arguably the most important aspect of the passive-NH₃ approach. While the potential for NH₃ formation over TWCs is well known [23], early research efforts were focused on avoiding NH₃ formation. Even so, subsequent reactor screening experiments [24–26], engine chassis dynamometer studies [27–31] and tunnel investigations [32–35] confirmed NH₃ slip from vehicles equipped with TWCs, where NH₃ generation was not necessarily expected under

typical operating conditions. Heeb et al. [30,31] further demonstrated that NH₃ was produced as a secondary pollutant over the TWC and was not generated by the engine and argued that NH₃ standards should be included in future regulations. While NH₃ slip from TWCs may be unfavorable in the traditional sense, in the passive-NH₃ SCR approach the main goal is to produce NH₃ over the TWC for use in a downstream SCR catalyst.

In this manuscript, we focus on NH_3 generation over a series of TWCs including: a high PGM, a low PGM, a dual-zone TWC and a lean NO_X trap catalyst (LNT) evaluated under identical conditions as the TWCs. Commercial monolithic cores of these catalysts were evaluated under both steady-state and lean-rich cycling conditions in a laboratory flow reactor. The effects of catalytic formulation, temperature and steady-state vs. cycling conditions on NH_3 generation were considered and will be discussed in detail below.

2. Experimental

2.1. Materials

Four fully formulated cores (wash-coated honeycomb cordierite monoliths) were used in the present investigation. Their properties are summarized in Table 1. Three of the cores were obtained from a commercial 1.3 LTWC that is employed in a 6-speed, Chevy Malibu vehicle (Model Year: 2009). The commercial catalyst design in this case was constructed using a dual-zone approach, where the front and rear sections were intentionally synthesized using different formulations: the first 62 mm (0.6 L) section of the monolith was a high platinum group metal (HPGM), Pd-only TWC (0/7.3/0 g/L of Pt/Pd/Rh, respectively) and the rear 73 mm (0.7 L) section was a low platinum group metal (LPGM), Pd/Rh TWC (0/1.14/0.3 g/L Pt/Pd/Rh, respectively), which also contained CeO₂. The HPGM catalyst, the LPGM catalyst and the "Dual-Zone" combination of the two were independently evaluated, where the HPGM catalyst was placed upstream of the LPGM catalyst in the Dual-Zone designation—as is the case on the vehicle.

In addition to the TWCs, a lean NO_X trap catalyst (LNT) was also evaluated under identical conditions as the TWCs. Obviously, the LNT catalyst includes a significant amount of NO_X storage capacity (NSC). The LNT core was obtained from a commercial LNT catalyst that is employed in a lean-gasoline BMW 120i vehicle (Model year: 2009). This is the same catalyst that has been selected as the new representative commercial LNT catalyst in the Crosscut Lean Exhaust Emissions Reduction Simulations (CLEERS) research community [36]. More detailed information regarding the characterization of this catalyst can be found elsewhere [37]. Briefly, semi-quantitative metals screening via inductively coupled plasma mass spectroscopy (ICP-MS) measurements conducted at Galbraith Laboratories confirmed the presence of Mg, Al, Ce and Ba as major components, with other elements of interest including: Zr, La, Pt, Pd, and Rh. Subsequent electron microscopy with complementary elemental analysis measurements exposed three compositionally distinct regions including: a Ce/Zr mixed oxide domain, a Mg/Al mixed oxide domain and an Al oxide domain. The Pt, Pd and Ba active components all seemed to be preferentially deposited on the Ce/Zr domain.

2.2. Catalytic evaluation

Catalytic activity measurements were performed using a laboratory flow reactor, described in more detail elsewhere [37,38]. Briefly, the monolithic cores were tightly wrapped in Zetex insulation tape and inserted into a horizontal quartz tube reactor. The quartz tube was heated using a horizontal bench-top furnace (Lindberg/Blue M). Gas mixtures were prepared using pressurized gas

Download English Version:

https://daneshyari.com/en/article/54705

Download Persian Version:

https://daneshyari.com/article/54705

<u>Daneshyari.com</u>