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a b s t r a c t 

The center manifold theory with respect to the simple Hopf bifurcation of a n -dimensional 

nonlinear multi-parametric system is treated via a proper symbolic form. Analytical ex- 

pressions of the involved quantities are obtained as functions of the parameters of the 

system via effective algorithms based on the followed procedure and carried out using a 

symbolic computation software. Moreover the normal form of a codimension 1 Hopf bi- 

furcation, as well as the corresponding Lyapunov coefficient and bifurcation portrait, can 

be computed for any system under consideration. Here the computational procedure is ap- 

plied to two nonlinear three-dimensional, three-parametric systems and graphical results 

are obtained as concerns the stability regions, the bifurcation portraits, as well as emerged 

limit cycles with respect to both the supercritical and the subcritical case of bifurcation. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

An extensive number of n -dimensional nonlinear dynamical systems ( n ≥ 3) in various fields of applied sciences are 

encountered in the literature. These are studied with respect to stability and local bifurcations caused by the variation 

of bifurcation parameters. There are examples in many scientific disciplines such as biosciences [1–4] , energy systems [5,6] , 

economics [7,8] etc. as well as in classic dynamical systems such as the Lorenz model [9] , Lü [10,11] and the Chen [12] model. 

Regarding the Hopf bifurcation, the combination of the center manifold theory and the Poincaré normal forms for planar 

systems, applied to n -dimensional ones, is presented in the classic book of Kuznetsov [13] . The method is based on the state 

space decomposition in the critical and non-critical subspace in addition to the necessary normalization with respect to the 

involved eigenvectors. Then substitution of the reduced critical equations in the invariance relation of the center manifold 

( W 

c ) ( [13] , Sections 5.4.1, 8.7.1 and 8.7.3), leads to the computation of the critical polynomial coefficients of W 

c and therefore 

to the evaluation of the coefficients of the equation restricted to the center manifold. Finally, according to the obtained 

two-dimensional normal forms ( [13] , Sections 3.5, 8.3), formulae for the resonant odd terms and the corresponding critical 

Lyapunov coefficients are obtained up to codimension 2 ( Bautin bifurcation ), and the corresponding bifurcation diagram is 

also shown. 
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In our work, we focus on the simple (codimension 1) Hopf bifurcation. By adopting a symbolic representation, we obtain 

specification of the necessary order of the center manifold that should be kept in each term involved in the analytic calcula- 

tions referring to the derivation of the restricted equation and the treatment of the invariance relation. We make extensive 

use of the symbolic algebra package Mathematica 7 in ( Section 2 , 2.2 , 2.3 ). 

The state space decomposition is applied here on the equilibrium path and hence the reduced equations, and all the 

formulae obtained, are expressed in terms of the system parameters. In particular the center manifold coefficients are de- 

rived as parameter functions (explicitly and implicitly via the eigen-quantities) and computed throughout the region of the 

parameter space of interest. Therefore the coefficients of the restricted equation expressed in terms of the eigenvectors and 

the center manifold coefficients and also the resonant term of the normal form (being function of the planar (restricted) 

coefficients), as well as the first Lyapunov coefficient, are numerically evaluated, not only at the critical parameter values, 

but throughout the whole parameter space. This allows the respective bifurcation portrait to be constructed. The parameter 

dependent formulae allow the computer assisted calculation of the derivatives of the various coefficients involved in the 

analysis and so allows the transversality condition to be verified at the critical equilibrium. The basic steps of the followed 

procedure are displayed in Section 2.3 . 

We note that as the analysis concerns a general multi-parameter system (we refer to the three-parameter case herein), 

in order to take into account the combined effects generated by the variation of as more as possible significant quantities 

of the physical background of the problem. We also note that the form and the structure of the representation adopted, as 

well as the obtained analytic formulae, allow the generalization and application of this procedure to any multi-dimensional 

and multi-parameter system, with minor modifications. Finally we would like to note that, as mentioned before, it is the 

structure and the steps of the analytical procedure that are shown here, while the formulae obtained, not listed here, are 

included in the respective electronic files, produced via algorithms based on the symbolic algebraic form of the analysis 

adopted herein. Relevant work regarding a resource efficient computational methodology for the evaluation of the normal 

form has been carried out by Tian and Yu [14] , where a recursive methodology is used. 

In Sections 3 and 4 we deal with two three-dimensional systems as applications of proposed symbolic computational 

procedure. These concern a modified Lorenz model and an autonomous Energy Resources model respectively. The stabil- 

ity analysis corresponding to each one of the systems, carried out in Sections 3.1 and 4.1 , concludes with the appropriate 

parameters forming the three-dimensional parameter space of the bifurcation that the systems undergo. Then in Sections 

3.2 and 4.2 , stability regions and bifurcation portraits for each one of the systems are presented in the parameter planes 

of interest. Finally bifurcated limit cycles for both systems are obtained using a multiple shooting algorithm. The obtained 

cycles, valid for specific values of the involved parameters, concern both the supercritical and the subcritical case of bifur- 

cation. In the subcritical case, the method proved particularly effective in the difficult task of obtaining an unstable cycle. 

2. Analysis and formulae for the center manifold theory 

2.1. Reduction to an ( n + 2 )-dimensional coordinate space 

Consider a smooth continuous-time three-parameter system with smooth dependence on the parameters: 

dx 

dt 
= f ( x ; a ) (2.1) 

with x ∈ R 

n , a = ( a 1 , a 2 , a 3 ) 
T ∈ R 

3 and f : R 

n +3 → R 

n with f ∈ C ∞ . If x 0 ( a ) is the equilibrium path of ( 2.1 ) and 

J 0 ( a ) = D x f ( x 
0 ( a ); a ) the Jacobian matrix evaluated at this equilibrium path, then for small perturbations ξ = x −x 0 ( a ), ex- 

pansion of ( 2.1 ) yields 

dξ

dt 
= J 0 ( a ) ξ + F ( ξ ; a ) . (2.2) 

The smooth vector function F : R 

n +3 → R 

n represents the nonlinear terms of the right-hand side of ( 2.2 ), that is 

F = O ( ‖ x ‖ 2 ) and 

F ( ξ ; a ) = 

1 

2 

F ( 2 ) ( ξ , ξ ; a ) + 

1 

6 

F ( 3 ) ( ξ , ξ , ξ ; a ) + · · · , (2.3) 

where 

F ( m ) 
(

1 u, . . . , m u ; a 
)

= 

n ∑ 

j 1 , ... , j m =1 

∂ m f ( x ; a ) 

∂ x j 1 . . . ∂ x j m 

∣∣∣∣
x = x 0 

1 u j 1 . . . 
m u j m , m = 2 , 3 , . . . (2.4) 

with 

1 u, . . . , m u ∈ C 

n . The Hopf bifurcation theorem (see [15] , Section 11.2) implies that if at a critical triplet a 0 = ( a 10 , a 20 , a 30 ), 

the Jacobian matrix J 0 has a pair of purely imaginary eigenvalues λ1,2 =±i ω 0 , ω 0 > 0, while the real part of the remaining 

eigenvalues is negative, then an oscillatory instability occurs close to a 0 , leading to a family of limit cycles. Moreover in a 

small region around a 0 , the Jacobian matrix J 0 has a pair of complex conjugate eigenvalues λ(a ) , λ̄(a ) with 

λ( a ) = μ( a ) + iω ( a ) , μ( a 0 ) = 0 , ω ( a 0 ) = ω 0 > 0 . (2.5) 
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