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a b s t r a c t 

We introduce a wavelet-based model-order reduction method (MOR) that provides an 

alternative subspace to Proper Orthogonal Decomposition (POD). We thus compare the 

wavelet and POD-based approaches for reducing high-dimensional nonlinear transient 

and steady-state continuation problems. We employ a global regularized Gauss–Newton 

(GN) algorithm for solving zero-residual problems on a reduced subspace. We rediscover 

that this latter is just a generalization of the Petrov–Galerkin method (PG) which retains 

GN’s fast convergence rate. Numerical results included herein indicate that wavelet-based 

method is competitive with POD, for small rank systems ( ≈ 100) and compression ratios 

below 25% while POD achieves up to 90%. Full-order-model (FOM) results demonstrate that 

the proposed PGGN algorithm outperforms the standard PG method. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Underbody blast simulations are highly complex and involve solving nonlinear algebraic systems of millions of equations 

and unknowns. Such simulations allow assessing the explosion impact on vehicles and personnel safety, as well as studying 

critical design configurations and enabling decision-making stages [1] . These parametric studies are intense from both CPU 

time and memory requirements. The CPU burden strongly suggests employing MOR techniques to perform simulations 

in real time that allow decision-making in a timely fashion. Different types of Reduced-Order Models (ROM) have been 

proposed to alleviate this computational burden [2] . 

Traditionally, MOR techniques are based on POD. They usually consist of the following: a computationally expensive ‘‘of- 

fline” stage is first executed, during which the FOM is adequately studied at carefully selected points in the input parameter 

space to compute a representative reduced subspace whose basis is used to obtain a ROM of the original large problem. 

Then, during the inexpensive “online” stage, the ROM is solved and its solutions expanded back onto the original space [3] . 

If the waiting time to obtain a solution is not a constraint, then a widely popular time-consuming strategy is to compute 

a family of solutions of the problem, for a suitable sample of input conditions, where every single solution is a “snapshot”. 

We then ensemble all snapshots as column vectors, to compute a compressed subspace via POD, which spans the FOM solu- 

tion [4–6] . An important issue is that the projection basis, and hence the ROM, only contains information that is present in 
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the ensemble of snapshots. Thus, a careful snapshot selection is critical to constructing a successful POD basis [7] . The stan- 

dard POD implementation implies approximating the problem of interest in a fixed reduced subspace of global basis vectors. 

However, this is not convenient to tackle problems characterized by different physical regimes, parameter variations, or mov- 

ing features such as discontinuities and fronts. Having a large number of snapshots to capture all these regimes/local features 

makes global POD impractical [8] . This drawback suggests seeking for adaptive approaches based on a local basis and alter- 

natives to POD. Kerfriden et al. described in [9] a bridge between POD-based model order reduction techniques and the clas- 

sical Newton/Krylov solvers. Their method overcomes some of the POD’s drawbacks found on structural problems involving 

plasticity or damage: find an initial snapshot that is adequately enough to represent the solution of the damaged structure 

accurately as well as significant topological changes that may occur in the structure. They proposed a corrective tool for the 

adaptive MOR for such mechanical problems whose novelty lies in the fact that integrates corrections inside the POD projec- 

tion framework. Ojo et al. [10] considered the Discrete Empirical Interpolation Method (DEIM) MOR approach for reducing 

a discretized nonlinear energy equation that arises from photovoltaic systems where each module contains several silicon 

cells. Their results showed that DEIM reduced the system size significantly while retaining the accuracy of the solution. A 

CFD-based aerodynamic design computational methodology that employs MOR as a surrogate evaluator is presented in [11] . 

The method builds local POD basis based on a zonal approach for resolving shock waves and improving the surrogate pre- 

diction in transonic flow. A current application of POD based MOR to large scale parametrized wave propagation problems is 

presented in [12] . Chinesta et al. reviewed in [13] the foundations and applications of the proper generalized decomposition 

(PGD), an alternative MOR technique that uses successive enrichments to approximate an unknown field variable. PGD avoids 

the complexity of standard grid-based discretization approaches, and thus circumvents the curse of dimensionality. PGD 

views the input space globally as coordinates of a higher dimensional space wherein an approximation can be computed at 

once. 

We presented a new strategy for projection and MOR in previous works [14,15] , which computes a reduced subspace 

using discrete wavelets that were able to reproduce the FOM’s behavior. This approach does not require using snapshots 

and thus is suitable to be applied to both transient and steady-state problems with no parameter variation. The roots 

of compressed sensing are traced back to signal processing, image processing, digital signal, among others applications, 

in all of which discrete wavelets play a key role. It became natural to exploit the usage of wavelets in MOR [16–18] . A 

wavelet–Galerkin MOR method is proposed in [19] to study the behavior of tall buildings that are prone to wind-induced 

stochastic vibration. The analysis in the Daubechies wavelet domain could transform the original nonlinear coupled differ- 

ential dynamic problem into a much simpler system of random algebraic equations. Goyal and Mehra [20] developed a fast 

diffusion wavelet method for solving parabolic PDEs. They employed the same operator for the construction of diffusion 

wavelet as well as for approximation of the PDE. Furthermore, these diffusion wavelets were used as MOR subspace. 

Alsmadi et al. [21] presented a new MOR technique based on an artificial neural network (ANN) prediction. They applied 

the ANN-based MOR for different scale systems with substructure preservation. ANN-based MOR is compared with classical 

MOR techniques and the simulation results confirmed the validity of the new method. A Wavelet-based MOR is applied to 

reducing distributed parameter systems in [22] . The proposed MOR technique uses multi-resolution methods to represent 

the system’s multiscale and local behavior. Applications such as heat transfer along a flat plate and a packed-bed reactor 

demonstrated the approach. 

The goal of the wavelet-based MOR is to provide an alternative subspace, out of the box, for those problems where 

there is no time to build a POD basis or when a global POD basis cannot adequately represent the local behavior. However, 

this alternative approach does not attain significant compression ratios that are common with POD as we find out here. 

To this end, we designed a Petrov–Galerkin direction to obtain solutions to zero-residual problems using wavelets [14] , 

which is a quasi-direction within the GN method. We thus compare the snapshot- and wavelet-based approaches for 

transient and steady-state continuation problems. We also propose a regularized procedure to avoid singularities of the 

Jacobian and a globalization strategy to ensure convergence regardless of the initial point. Our test cases show that the 

proposed enhancements outperform the standard Newton method. We implement this algorithm as a MATLAB library for 

solving high-dimensional problems. Preliminary numerical results included here for a set of large-scale problems show the 

applicability of this library to problems of practical interest and its ability to reproduce the FOM’s relevant features. 

The remainder of the paper is organized as follows: Section 2 presents the mathematical models of the governing 

partial differential equations. Section 3 revises the proposed MOR method and also shortly discusses basic wavelet and 

POD properties. In Section 4 , we present concrete numerical examples of the application of the PGGN algorithm. The last 

sections state concluding remarks, future work, and acknowledgments, respectively. 

2. Mathematical models 

We introduce two mathematical models in this section. We start with the 1-D Advection–Diffusion nonlinear parabolic 

equation; we then derive Bratu’s 1-D problem from its particular steady-state case. We generalize Bratu’s 1-D problem to 

higher dimensional spaces. We utilize central finite differences for the numerical discretization of Eqs. (1 )–( 3 ). Appendices 

A and B cover the discretization process in detail. 
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