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a b s t r a c t 

The morphological stability of dendritic growth from the binary alloy melt with an external 

flow is studied by means of the matched asymptotic expansion method and multiple vari- 

able expansion method. The uniformly valid asymptotic solution is obtained for the case 

of the large Schmidt number. The analytical result reveals that the stability of dendritic 

growth depends on a critical stability number above which dendritic growth is stable. The 

selection condition of dendritic growth determines the Peclet number, tip growth velocity, 

tip radius and oscillation frequency, which is significantly affected by the external flow. The 

stability mechanism of dendritic growth in the binary alloy melt with the external flow re- 

mains the same as that in pure melt. In the binary alloy melt with the external flow the 

solute concentration destabilizes the dendritic growth system. The numerical computation 

for various growth conditions demonstrates the variations of the critical stability number, 

tip growth velocity, tip radius, and oscillatory frequency with the undercooling, external 

flow and morphological number. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

The pattern formation of dendritic growth is one of the fundamental subjects in materials science and engineering. The 

morphological instability during solidification may lead to various dendritic microstructures and greatly affect the physical 

and mechanical properties of final solidification products. During the past decades, several theories on the morphologi- 

cal stability of dendritic growth have been developed successively: maximocity principle [1] , marginal stability hypothesis 

[2] , microscopic solvability condition theory [3] and interfacial wave theory [4] . The dendritic growth system is not only a 

nonlinear partial differential equation problem which contains the nonlinear Navier–Stokes equation, but also a singularly- 

perturbed moving boundary value problem in which the moving interface shape is also a part of solution. Generally, it is 

hard or even impossible to obtain an exact solution, but approximate analytical solutions are possible. Bouissou et al. [5] and 

Ananth et al. [6,7] studied the effect of convective flow on dendritic growth in the pure melt, but their analytical solutions 

were not uniformly valid. By using the matched asymptotic expansion method, Xu [8] studied dendritic growth from the 

pure melt with an external flow and obtained the uniformly valid asymptotic solution as well as the stability criterion of 

the interface morphology. Compared with the case in the pure melt, the dynamics of dendritic growth in a convective bi- 

nary alloy melt may be greatly changed because of the effect of constitutional undercooling and melt convection [9–14] . 

Although we may assume that the dynamics of dendritic growth in the convective binary alloy melt obeys the same mech- 

anism as that in the convective pure melt, we need perform strict mathematical argumentation to reveal this mechanism. 
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Fig. 1. The schematic diagram of dendritic growth in an undercooled alloy melt affected by an external flow. 

Chen et al. [15] obtained the uniformly valid asymptotic solution for dendritic growth from the binary alloy melt with an 

external flow and showed the significant effect of melt convection on the interface shape, temperature field and concen- 

tration field. The aim of the paper is to carry out the morphological stability analysis of dendritic growth from the binary 

alloy melt with an external flow. For the stability analysis, there are two basic approaches: one is to solve an initial and 

boundary value problem, the other is to make a normal mode analysis in which the perturbations are assumed in the form 

of quasi-steady waves and we transform their evolution into an eigenvalue problem. In the present paper, we will adopt the 

normal mode approach developed by Xu [4] to investigate the uniformly valid asymptotic solution of perturbations by using 

the matched asymptotic expansion method and multiple variable expansion method, reveal the stability mechanism of den- 

dritic growth and obtain the explicit formulae of the tip growth velocity, tip radius and oscillation frequency for dendritic 

growth in the binary alloy melt with an external flow. 

2. Mathematical formation 

We consider the interface of a single axi-symmetric dendrite growing in the convective undercooled binary alloy melt 

driven by an external flow ( Fig. 1 ). It is assumed that the melt is the isotropic and incompressible Newtonian fluid. ( T ∞ 

) D 
and ( C ∞ 

) D denote the dimensional temperature and concentration far from the dendrite interface, respectively. ( T L ) D and 

( T S ) D denote the dimensional temperature fields in the liquid phase and solid phase, respectively. ( C L ) D and ( C S ) D denote 

the dimensional concentration fields in the liquid phase and solid phase, respectively. ( U ) D denotes the dimensional velocity 

field in the liquid phase. Herein the subscripts “D” represent dimensional quantities. The nondimensionalization is carried 

out in the same way as that in Ref. [15] , in which the constant tip growth velocity V is the velocity scale, the diffusion 

length � D is the length scale and � D / V is the time scale. In the moving paraboloidal coordinate system ( ξ , η, θ ) fixed at the 

dendrite tip, r = η2 
0 
ξη, z = η2 

0 
( ξ 2 − η2 ) / 2 , where the normalization parameter η2 

0 
is to be determined by setting the location 

of the dendrite-tip, r = 

√ 

x 2 + y 2 . Since there is no flow in the azimuthal direction θ , the interface shape function is written 

as η=ηS ( ξ , t ), the velocity field is written as U= ( u, v , 0), the vorticity vector is written as �=∇ ×U= (0, 0, ω 3 ), where u 

and v denote the components along ξ direction, η direction, respectively, and ω 3 is the only non-zero third component of 

�. We introduce the stream function ψ =ψ( ξ , η, t ) and vorticity function ζ (ξ , η, t) = η2 
0 
ξηω 3 such that 

u = 

1 

η4 
0 
ξη

√ 

ξ 2 + η2 

∂ψ 

∂η
, v = 

−1 

η4 
0 
ξη

√ 

ξ 2 + η2 

∂ψ 

∂ξ
, (2.1) 

where η2 
0 

is determined such that the steady interface function satisfies the normalization condition ηS (0, t ) = 1. For the 

binary alloy melt the temperature T S and concentration C S in the solid phase are taken to be constant, the densities in the 

liquid phase and solid phase are taken to be equal and the buoyancy effect is neglected. 

For the typical metals, the Schmidt number S C is large, S C = υ/ κD , where υ is the kinematical viscosity, κD is the solute 

diffusivity in the liquid phase. We adopt the reciprocal of the large Schmidt number ε 2 =1/ S C as a small parameter. By using 

the matched asymptotic expansion method we obtained the solution for the temperature, concentration, flow fields and the 

interface shape function [15] . The basic state solution is denoted by the subscript B. 
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