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a b s t r a c t 

A sixth-order finite volume method is proposed to solve the Poisson equation for two- 

and three-dimensional geometries involving Dirichlet condition on curved boundary do- 

mains where a new technique is introduced to preserve the sixth-order approximation for 

non-polygonal or non-polyhedral domains. On the other hand, a specific polynomial recon- 

struction is used to provide accurate fluxes for elliptic operators even with discontinuous 

diffusion coefficients. Numerical tests covering a large panel of situations are addressed to 

assess the performances of the method. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Very high-order finite volume method (higher than the second-order) for elliptic and parabolic operators on unstructured 

meshes is a recent trend and has received considerable attention during the last decade. The coupling of the Euler system 

with a viscous term [1–7] , the incompressible Navier–Stokes equations [8–10] or the shallow-water system with turbulence 

[11] are, among others, strong motivations to design efficient and accurate schemes for elliptic operators in the finite 

volume context. There exists a large literature for the second-order approximations with convergence and stability analysis 

[12–19] , but few studies have been done for very high-order approximations on unstructured meshes [7,9,10,20,21] . In a 

recent paper [22] , a new method for convection–diffusion problems has been developed for two-dimensional geometries 

providing up to sixth-order approximations. The technique is based on specific polynomial reconstructions to evaluate the 

fluxes across the cell interfaces with a very high accuracy. 

The goal of the present study is, on the one hand, to achieve an extension for the three-dimensional case and, on the 

other hand, to develop a new class of polynomial representation for the boundary to preserve an effective sixth-order ap- 

proximation even with non-polygonal and non-polyhedral domains. Indeed, when dealing with second-order finite volume 

schemes for elliptic operator, the domain can be substituted by a polygonal or a polyhedral one and the Dirichlet condition 

is evaluated at the vertices or the midpoint of the boundary edges. The question of curved boundary is relevant for at least 

third-order schemes where the substitution with a polygonal or a polyhedral domain will reduce the global accuracy of the 
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Fig. 1. Notation for the two-dimensional (left) and three-dimensional mesh. 

scheme. In [3] , the authors propose a polynomial reconstruction which exactly matches the Dirichlet condition at the Gauss 

points on the curved boundary. The procedure then involves two new linear constraints added to the matrix system we use 

to compute the polynomial coefficients and the method is extended to the Neumann condition. Another approach consists 

in applying a local mapping ( x, y ) → ( ξ , η) which transforms the cell into a new computational domain to match with 

the boundary [23] . Integrals therefore involves the Jacobian matrix of the transformation and polynomial reconstruction 

procedure is performed in the local basis leading to a rather complex calculation. The method we propose in the present 

study is related to the works of [3] but the Dirichlet condition is enforced in a different way by using the mean value on 

the edge as a free parameter. Then, we determine the parameter such that the polynomial reconstruction and the Dirichlet 

condition corresponds on the curved arc or surface. 

Another important issue concerns the approximation of the solution when dealing with different materials. Discontinuity 

of the coefficients takes place at the interface between two dielectrics and specific numerical schemes have to be designed 

to preserve the accuracy on both sides since the derivative of the solution may present a jump [24] . We have developed a 

technique for the second-order case [25] in the finite volume context and extension to the sixth-order is obtained in the 

present study. 

Very high-order method leads to an important computational effort due to the reconstruction process and a large part 

of the time consumption derives from the polynomial coefficients evaluation. We proposed a new procedure to dramatically 

reduce the computational cost by calculating a local vector for each Gauss point one can identify as a partial assembly proce- 

dure. Such evaluation is carried out once during the pre-processing stage and it results that the polynomial evaluation at the 

Gauss points is reduced to a merely inner product between the local vector and the data, saving a lot of memory and time. 

In the present document, we do not tackle the convective part on purpose since the main difficulty concerns the diffu- 

sive contribution so we only focus on the Poisson problem. The second section is devoted to the generic very high-order 

finite volume scheme while the third section deals with the polynomial reconstruction and detail all the improvements we 

propose. Numerical experiments are presented in the four section to assess the scheme accuracy and robustness as well as 

the efficiency of the iterative solver coupling with a new preconditioning strategy. 

2. Generic high-order finite volume scheme 

We consider an open bounded domain � of R 

2 or R 

3 with a piecewise regular curved boundary. �D and �N define a 

partition of the boundary ∂� where we shall prescribe the Dirichlet and the Neumann conditions respectively. We intend 

to compute accurate approximations of function V solution of the Poisson equation 

−∇ . (ε∇ V ) = g, in �, ε∇V.n = 0 , on �N , V = V D on �D , (1) 

with ε a positive function which may present some discontinuities, V D is a given function defined on �D and g is the 

source term. We assume that boundary �N is composed of lines (2D case) or planes (3D case) while �D is curved. In 

some applications, we shall split the domain into two sub-domains �1 and �2 shared by an interface � and we denote 

by ε � = ε | �� 
, � = 1 , 2 the restrictions on each sub-domain. Functions ε 1 and ε 2 are regular but ε presents a discontinuity 

at the interface �. Such an assumption is required when dealing with two materials with different physical characteristics 

which usually happen when dealing with several layers of dielectric or semiconductor [26] . 

We introduce the notations to derive the finite volume scheme (see Fig. 1 ). For the two-dimensional case, the domain is 

divided into non-overlapping convex polygonal cells c i , i = 1 , . . . , I and 

�h = 

I ⋃ 

i =1 

c i 

is the associated polygonal domain. We denote by e i j = c i ∩ c j the common interface shared by two adjacent cells while 

n ij stands for the unit normal vector from c i towards c j . To handle the edges on the boundary, we introduce the notation 

e iD which corresponds to an edge of cell c i which belongs to the boundary of the polygonal domain such that its vertices 

belong to �D . Since � � = �h , we denote by �h,D the boundary of �h constituted of the edges e iD and vector n iD is the 

unit outward normal vector of c i on e iD . In the same way we define e iN and n iN for the edge associated to �N . At last ν i 
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