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a b s t r a c t 

This paper addresses the global convergence of the epidemic models whose infected sub- 

systems are monotone in the sense of Hirsch (1984). By invoking results from monotone 

system theory and nonlinear control theory, a simple method is proposed for determining 

the global asymptotic stability of a disease free equilibrium (DFE) and the global conver- 

gence to an endemic equilibrium (EE). Typical epidemic models are studied to illustrate 

the applicability of the proposed methodology. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Many epidemic models have a disease free equilibrium (DFE) at which the population is not invaded by infectious dis- 

eases. To verify the stability performance of the DFE, a threshold parameter R 0 (known as the basic reproduction number) 

is needed, and the related analysis method has been widely used (see [1,2] and the references therein). In principle, these 

results only reveal the local dynamic properties since they are obtained by examining the linear approximation near the 

DFE. In the past literature, the powerful Lyapunov’s direct method has also been systematically explored to determine the 

global asymptotic stability of a DFE or an endemic equilibrium (EE); see, for instance, [3–8] and [9] . 

On the study of epidemic models, there is a not too striking but clearly significant branch in which the monotone systems 

theory plays a role. The earliest work in this respect appears in [10] , and is further interpreted from the viewpoint of 

monotone flow in [11] . According to [11] , one of important properties of monotone systems is that, under suitable conditions, 

their solutions often converge to either the origin or a unique positive equilibrium. This observation has been helpful for 

dealing with some general compartment systems such as epidemic systems [12] . 

Due to the appealing properties of monotone systems, some approaches have been developed for decomposing biolog- 

ical systems into monotone subsystems, and much insight has been attained from the analysis of the interconnections of 

monotone subsystems using tools from control theory (see [13] and the references therein). Indeed, it should be a novel 

direction to combine the monotone systems theory with the stability analysis methods from control community. Note that 

the input-to-state stability (ISS) related robust stability criteria [14,15] , the nonlinear small-gain theory [16] and other ad- 

vanced theories [17] have been playing a decisive role in robust control designs. Among the above control theories, the 
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so-called “converging input converging state” (CICS) stability theory, originated from the ISS framework, is quite suitable for 

determining the global convergence of the interconnected systems without using involved Lyapunov functions. 

For the case that the infected subsystem possesses the monotone property and the non-infected subsystems can again 

be proved to be CICS stable, we in this paper provide a simple method for determining the global asymptotic stability (GAS) 

of the DFE and the global convergence to an EE. More specifically, using the monotone systems theory and the R 0 based 

stability theory, we deduce that the solutions of the infected subsystem converge to the origin when R 0 < 1, or converge 

to a positive equilibrium when R 0 > 1. Then, by the application of the CICS stability theory, we again conclude that the 

non-infected subsystem is globally convergent. In the detailed treatment, we will first check if the concerning model can 

be dealt with by the method in [1] , then check if the infected subsystem has a monotone property and if the non-infected 

subsystem is CICS stable. In this way, we will establish a global convergence analysis method that differs from the existing 

ones, and obtain global convergence or global stability results rather than local ones. 

The rest of the paper is organized as follows. In Section 2 , we provide necessary mathematical preliminaries and intro- 

duce the related theorems by analyzing a SIS model. Then, in Section 3 , we develop global variants of the local thresh- 

old criteria proposed in the present literature of mathematical biology. In Section 4 , we study the global stability analysis 

problem for two epidemic models whose infected subsystems are monotone. In Section 5 , numerical simulation results are 

presented to support the main theoretical results. Finally, concluding remarks are given in Section 6 . 

2. Preliminaries 

2.1. Basic reproduction number 

In this subsection, we outline the computation of the basic reproduction number. It is proposed in [1] and is powerful 

for determining the local stability analysis of a DFE. 

Consider a heterogeneous population that can be grouped into n homogeneous compartments. Let x = ( x 1 , ���, x m 

,x m + 1 , 
���, x n ) 

T with x i being the number of individuals in the i thcompartment, and without loss of generality assume that the first 

m compartments correspond to the infected individuals. In addition, define X s as the disease-free set: X s = { x ∈ R 

n , x ≥ 0 | x i = 

0 , i = 1 , . . . , m } . 
In order to compute the basic reproduction number, let F i (x ) be the appearance rate of new infections in compartment 

i , V 

−
i 
(x ) be the transfer rate of individuals out of compartment i , and V 

+ 
i 
(x ) be the transfer rate of individuals into com- 

partment i . Then, the disease transmission model can be described by 

˙ x i = f i (x ) = F i (x ) − (V 

−
i 
(x ) − V 

+ 
i 
(x )) , i = 1 , · · · , n 

i.e., 

˙ x = f (x ) = F (x ) − ( V 

−(x ) − V 

+ (x )) 

f = ( f 1 , · · · , f n ) 
T 
, F = ( F 1 , · · · , F n ) 

T 
, V 

− = (V 

−
1 
, · · · , V 

−
n ) 

T 
, V 

+ = (V 

+ 
1 
, · · · , V 

+ 
n ) 

T 
. 

(1) 

The following conditions are needed for inferring the theoretical results of [1] : 

(A1) If x ≥ 0, then F i , V 

+ 
i 
, V 

−
i 

≥ 0 for i = 1, ���, n ; 

(A2) If x i =0, then V 

−
i 

= 0 . In particular, if x ∈ X s , then V 

−
i 

= 0 for i = 1, ���, m ; 

(A3) F i = 0 if i > m ; 

(A4) If x ∈ X s , then F i = 0 and V 

+ 
i 

= 0 hold for i = 1, ���, m ; 

(A5) If F (x ) is set to zero, then all eigenvalues of Df ( x 0 ) have negative real parts, where x 0 = (0 , · · · , 0 , x ∗m +1 , · · · , x ∗n ) T is 

a disease free equilibrium (DFE) of system ( 1 ) and Df ( x 0 ) is the Jacobian [ ∂ f i / ∂ x j ] of f evaluated at the DFE x 0 . 

When system ( 1 ) satisfies conditions (A1)–(A5), D F ( x 0 ) and D ( V 

− − V 

+ )( x 0 ) can be partitioned as ( Lemma 1 of [1] ) 

D F ( x 0 ) = 

(
F 0 

0 0 

)
, D ( V 

− − V 

+ )( x 0 ) = 

(
V 0 

× ×

)
, (2) 

where 

F = 

[
∂ F i 

∂ x j 
( x 0 ) 

]
, V = 

[
∂(V 

−
i 

− V 

+ 
i 
) 

∂ x j 
( x 0 ) 

]
, 1 ≤ i, j ≤ m, 

and ×denotes the entry not needed in the subsequent computations. 

Based on the above partition, then the basic reproduction number can be defined as R 0 =ρ( FV 

−1 ), where ρ( FV 

−1 ) denotes 

the spectral radius of FV 

−1 . 

In the following, we analyze an example to show how we make a decomposition (F , V 

−, V 

+ ) and verify that the con- 

ditions (A1)–(A5) are fulfilled under the decomposition. Furthermore, we will show that the block partition in ( 2 ) does 

appear. 
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