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a b s t r a c t 

The problem of heat conduction in one-dimensional piecewise homogeneous composite 

materials is examined by providing an explicit solution of the one-dimensional heat equa- 

tion in each domain. The location of the interfaces is known, but neither temperature nor 

heat flux are prescribed there. We find a solution using the Unified Transform Method, due 

to Fokas and collaborators, applied to interface problems and compute solutions numeri- 

cally. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

The problem of heat conduction in a composite wall is a classical problem in design and construction. It is usual to 

restrict to the case of walls with physical properties that are constant throughout the material and are considered to be 

of infinite extent in the directions parallel to the wall. Further, we assume that temperature and heat flux do not vary in 

these directions. In that case, the mathematical model for heat conduction in each wall layer is given by Hahn and Özisik 

[1, Chapter 10] : 

u 

( j) 
t = κ j u 

( j) 
xx , x j−1 < x < x j , (1a) 

u 

( j) (x, 0) = u 

( j) 
0 

(x ) , x j−1 < x < x j , (1b) 

β1 u 

(1) (x 0 , t) + β2 u 

(1) 
x (x 0 , t) = f 1 (t) , t > 0 , (1c) 

β3 u 

(n +1) (x n +1 , t) + β4 u 

(n +1) 
x (x n +1 , t) = f 2 (t) , t > 0 , (1d) 

where u ( j ) ( x, t ) denotes the temperature in the wall layer indexed by ( j ), κ j > 0 is the heat-conduction coefficient of the 

j th layer (the inverse of its thermal diffusivity), x = x j−1 is the left extent of the layer, x = x j is its right extent, and βn for 

n = 1 , 2 , 3 , 4 are constants. The sub-indices denote derivatives with respect to the one-dimensional spatial variable x and the 

temporal variable t . The function u 
( j) 
0 

(x ) is the prescribed initial condition of the system. The continuity of the temperature 

u ( j ) and of its associated heat flux κ j u 
( j) 
x are imposed across the interface between layers. In what follows it is convenient 

to use the quantity σ j , defined as the positive square root of κ j : σ j = 

√ 

κ j . 
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Fig. 1. Domains for the application of Green’s Theorem in the case of a finite domain with n interfaces. 

If each layer is in perfect thermal contact then the interface conditions are 

u 

( j) (x j , t) = u 

( j+1) (x j , t) , t > 0 , (2a) 

σ 2 
j u 

( j) 
x (x j , t) = σ 2 

j+1 u 

( j+1) 
x (x j , t) , t > 0 . (2b) 

A derivation of the interface conditions for perfect thermal contact is found in [1, Chapter 1] . However, if the thermal 

contact is imperfect we prescribe the interface conditions 

σ 2 
j u 

( j) 
x (x j , t) = H j 

(
u 

( j+1) (x j , t) − u 

( j) (x j , t) 
)
, t > 0 , (3a) 

σ 2 
j+1 u 

( j+1) 
x (x j , t) = H j 

(
u 

( j+1) (x j , t) − u 

( j) (x j , t) 
)
, t > 0 , (3b) 

where H j � = 0 is the contact transfer coefficient at x = x j and 1 ≤ j ≤ n . Perfect thermal contact, is recovered in the limit 

H j → ∞ . In applications, imperfect boundary conditions are used to model roughness and contact resistance [2–5] . Carr 

and Turner [3] approach this problem using a semi-analytical method based on the Laplace transform and an orthogonal 

eigenfunction expansion. Their interest in the problem is to accurately solve a two-scale modeling problem for transport or 

fluid flow in porous media exhibiting small scale heterogeneities in material properties. The authors note that for a large 

number of layers, multilayer diffusion is possibly the most simple example of such a problem. However, their numerical 

implementation for their analytical solution only works for up to ten layers [3] . They also propose a “semi-analytical” model 

which works for a large number of layers. 

In this paper, we use the Fokas Method (also called the Unified Transform Method) [6–8] to provide explicit solution 

formulae for different heat transport interface problems of the types described above. Even for a simple problem (two finite 

walls in perfect thermal contact), the classical approach using separation of variables [1] can provide an explicit answer only 

implicitly. Indeed, the solution obtained in [1] depends on certain eigenvalues defined through a transcendental equation 

that can be solved only numerically. In contrast, the Fokas Method produces an explicit solution formula involving only 

known quantities. In [9] the problem of heat conduction in perfect thermal contact was considered using the Fokas Method 

to provide explicit solution formulae for a number of examples for up to three domains. In this paper we extend that 

method to include more general interface conditions and a generic number of interfaces. 

Interface problems for partial differential equations (PDEs) are initial boundary value problems for which the solution of 

an equation in one domain prescribes boundary conditions for the equations in adjacent domains. In applications, interface 

conditions are often obtained from conservation laws [10] . Few interface problems allow for an explicit closed-form solu- 

tion using classical solution methods. Using the Fokas Method, such solutions may be constructed for both dissipative and 

dispersive linear interface problems as shown in [9,11–16] . 

2. The Fokas Method for the heat equation 

We follow the standard steps in the Fokas Method. Assuming existence of a solution, we begin with the so-called “local 

relations”: (
e −ikx + ω j (k ) t u 

( j) 
)

t 
= 

(
e −ikx + ω j (k ) t σ 2 

j (u 

( j) 
x + iku 

( j) ) 
)

x 
, (4) 

where ω j (k ) = (σ j k ) 
2 . Without loss of generality we shift the problem so that x 0 = 0 . 

Integrating each local relation (4) around the appropriate domain (see Fig. 1 ) and applying Green’s Theorem we find the 

global relations: 

0 = 

∫ x j 

x j−1 

e −ikx u 

( j) 
0 

(x ) d x −
∫ x j 

x j−1 

e −ikx + ω j (k ) T u 

( j) (x, T ) d x 

+ 

∫ T 

0 

σ 2 
j e 

−ikx j + ω j (k ) s (u 

( j) 
x (x j , s ) + iku 

( j) (x j , s )) d s 

−
∫ T 

0 

σ 2 
j e 

−ikx j−1 + ω j (k ) s (u 

( j) 
x (x j−1 , s ) + iku 

( j) (x j−1 , s )) d s, 

(5) 
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