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a b s t r a c t 

In this study, a two-dimensional cell-centred finite volume scheme is used to simulate dis- 

continuity in shallow water flows. Instead of using a Riemann solver, an artificial viscos- 

ity technique is developed to minimise unphysical oscillations. This is constructed from a 

combination of a Laplacian and a biharmonic operator using a maximum eigenvalue of the 

Jacobian matrix. In order to achieve high-order accuracy in time, we use the fourth-order 

Runge–Kutta method. A hybrid formulation is then proposed to reduce computational time, 

in which the artificial viscosity technique is only performed once per time step. The con- 

vective flux of the shallow water equations is still re-evaluated four times, but only by 

averaging left and right states, thus making the computation much cheaper. A comparison 

of analytical and laboratory results shows that this method is highly accurate for deal- 

ing with discontinuous flows. As such, this artificial viscosity technique could become a 

promising method for solving the shallow water equations. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Nowadays, numerical models of the shallow water equations (SWEs) play an important role in simulating hydrodynamics 

in many real applications, e.g. in rivers, lakes, floodplains and coastal areas. These numerical models should be efficient and 

accurate, even when simulating complex flow problems. However, when they encounter discontinuous flows, these models 

may become unstable because of significant oscillations, and therefore require special treatment. Finding the best way to 

treat these difficulties remains an outstanding research challenge. 

Within the framework of the finite volume scheme, some significant developments have occurred in the past two 

decades, particularly for Riemann solvers such as the Roe, HLL or HLLC schemes, which have been proven to be robust. 

We refer to [1–16] . A Riemann solver can capture the sharp gradients of a hyperbolic system with low-level diffusion and 

oscillations. Therefore, this solver has become very popular for solving the SWEs. 

In a cell-centred finite volume (CCFV) 1 scheme, a Riemann solver is used to re-evaluate the convective flux of the SWEs. 

In the Riemann solver approximation of Roe, the convective flux is re-evaluated based on a linearisation consisting of eigen- 

values and eigenvectors of the approximate Jacobian matrix. In the Harten–Lax–van Leer-contact (HLLC) scheme, the left, 

middle (contact) and right wave speeds of every face should be computed to re-evaluate the convective flux. The main 

variables used in these schemes (such as depth and velocities or unit discharges) are usually reconstructed using a gra- 

dient function, which is based on the cell-average value, in order to achieve second-order accuracy in space. To extend 
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1 CCFV = cell-centred finite volume. 
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this to high-order accuracy in time without introducing unphysical oscillations, the Runge–Kutta scheme is generally used. 

However, computation using a Riemann solver may become very expensive when using a high-order scheme such as the 

Runge–Kutta fourth-order scheme. This is because the solver has to be computed four times per time step in order to re- 

evaluate the convective flux. For example, a domain that is to be simulated for 10 s with a 1-s time step requires this solver 

to be computed four times per second. This would mean performing 40 computations of the Riemann solver for 10 s, which 

would create an unavoidably high computational cost. 

The present idea emerged from the above problem. We hypothesise that a cheaper method can be found that avoids the 

need to execute the Riemann solver at all when using the Runge–Kutta fourth-order scheme. Instead, we develop an artificial 

viscosity technique that replaces the role of the Riemann solver. This technique is cheaper because it is only computed once 

per time step. The convective flux is still re-evaluated four times, but only by averaging the left ( L ) and right ( R ) states. 

We will show that this artificial viscosity technique can also minimise unphysical oscillations and is highly accurate when 

dealing with discontinuous flows. However, we would like to emphasise that we are not claiming that our present method 

is better than the Riemann solver, but rather that it could be used as a cheaper alternative. Further explanation of the 

comparison between the Riemann solver and our present method is given in Section 2.5 . 

The artificial viscosity technique was very popular in the 1980s and 1990s, particularly in aeronautics. Jameson et al. 

[17] pioneered the development of the artificial viscosity technique in the form of the well-known pseudo-second-order 

Jameson–Schmidt–Turkel (JST) scheme. They solved the Euler equations to simulate inviscid transonic flows associated with 

shock waves on structured curvilinear meshes. Jameson and Mavriplis [18] and Mavriplis [19] then developed this model on 

unstructured triangular meshes, achieving stable and accurate results. Van der Burg et al. [20] improved the JST scheme by 

replacing the Lax–Friedrichs dissipative flux with Roe’s one. This new scheme was more accurate but also more expensive, 

since in Roe’s scheme the Jacobian matrix must be accounted for. Swanson et al. [21] presented a modified JST scheme 

in a form similar to a total variation diminishing (TVD) scheme. They proved that the scheme could properly minimise 

oscillations due to strong shock waves. 

In hydrodynamic and free-surface flow simulations, we are not aware of any significant developments of the artificial 

viscosity technique in relation to the Riemann solver. We note some works here that are based on the finite volume method 

and also on the finite difference method. Fennema and Chaudhry [22] used explicit second-order finite difference schemes 

(the MacCormack, Lambda and Gabutti schemes) with an artificial viscosity technique to simulate unsteady free-surface 

flows associated with shocks and bores. Hino et al. [23] applied an artificial viscosity technique to a finite volume scheme for 

simulating flows around submerged hydrofoils on an unstructured grid. Younus and Chaudry [24] used an artificial viscosity 

technique with a finite difference scheme to simulate a hydraulic jump over a transition channel; they also included a 

k –ԑ turbulent scheme in their model. Meselhe et al. [25] and Fiedler and Ramirez [26] simulated respectively transcritical 

flows in an open channel and two-dimensional overland flows using an artificial viscosity technique in a finite difference 

scheme. Sabbagh-Yazdi et al. [27] solved a time-dependent concentration diffusion using an artificial viscosity technique in a 

finite volume scheme. Previously, we also developed an artificial viscosity technique using a CCFV scheme to simulate dam- 

break flows on curvilinear meshes. Interested readers are referred to [28–30] . In the present study, we modify our previous 

artificial viscosity technique specifically for the determination of the adaptive coefficient. Our intention is to investigate 

the capability of this new scheme when dealing with discontinuous flows. This paper is organised as follows. The governing 

equations and numerical model are explained in Section 2 . The verifications of our numerical model against some theoretical 

and experimental benchmark tests are given in Section 3 . Finally, conclusions are given in Section 4 . 

2. Mathematical formulation 

In this section, the mathematical formulations of both the governing equations and our numerical model are presented. 

A CCFV scheme and the Runge–Kutta fourth-order method are used for space and temporal discretisation respectively. 

2.1. Governing equations 

The integration of the three-dimensional Navier–Stokes equations in the vertical direction with the assumptions of uni- 

formly distributed vertical velocity, negligible hydrostatic pressure distribution, free surface, small bed inclination and in- 

compressibility yields the SWEs. These can be written as 

∂W 
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+ 
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+ 

∂G 

∂y 
= S , (1) 

where W, F and G are the vectors described in Eq. (2) . This consists of three main variables, H, u and v , which respectively 

are the water depth and the velocity components in the x and y directions. The variable g is the acceleration due to gravity, 

and Sx and Sy are the bed slopes in the x and y directions respectively: 
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