

Contents lists available at ScienceDirect

Applied Mathematics Letters

www.elsevier.com/locate/aml

Nonlinear Choquard equations: Doubly critical case

Jinmyoung Seok

Department of Mathematics, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon 16227, Republic of Korea

ARTICLE INFO

Article history: Received 21 July 2017 Received in revised form 28 August Accepted 28 August 2017 Available online 5 September 2017

Keywords: Semilinear elliptic Choquard equation Critical exponent Variational method

ABSTRACT

Consider nonlinear Choquard equations

$$\begin{cases} -\Delta u + u = (I_{\alpha} * F(u))F'(u) & \text{in } \mathbb{R}^{N}, \\ \lim_{x \to \infty} u(x) = 0, \end{cases}$$

where I_{α} denotes Riesz potential and $\alpha \in (0, N)$. In this paper, we show that when F is doubly critical, i.e. $F(u) = \frac{N}{N+\alpha}|u|^{\frac{N+\alpha}{N}} + \frac{N-2}{N+\alpha}|u|^{\frac{N+\alpha}{N-2}}$, the nonlinear Choquard equation admits a nontrivial solution if $N \geq 5$ and $\alpha + 4 < N$.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Let N > 3, $\alpha \in (0, N)$. We are concerned with the nonlinear Choquard equation:

$$\begin{cases}
-\Delta u + u = (I_{\alpha} * F(u))F'(u) & \text{in } \mathbb{R}^{N}, \\
\lim_{x \to \infty} u(x) = 0,
\end{cases}$$
(1.1)

where I_{α} is Riesz potential given by

$$I_{\alpha}(x) = \frac{\Gamma(\frac{N-\alpha}{2})}{\Gamma(\frac{\alpha}{2})\pi^{N/2}2^{\alpha}|x|^{N-\alpha}}$$

and Γ denotes the Gamma function. It is the Euler-Lagrange equation of the functional

$$J_{\alpha}(u) = \frac{1}{2} \int_{\mathbb{R}^{N}} |\nabla u|^{2} + u^{2} dx - \frac{1}{2} \int_{\mathbb{R}^{N}} (I_{\alpha} * F(u)) F(u) dx.$$

Physical motivation of (1.1) comes from the case that $F(u) = \frac{1}{2}|u|^2$ and $\alpha = 2$. In this case, Eq. (1.1) is called the Choquard-Pekar equation [1,2], Hartree equation [3,4] or Schrödinger-Newton equation [5,6], depending

E-mail address: jmseok@kgu.ac.kr.

on its physical backgrounds and derivations. The existence of a ground state in this case is studied in [2,7,8] via variational arguments.

The functional J_{α} can be considered as a nonlocal perturbation of the fairly well-studied functional consisting of only local terms:

$$J_0(u) = \frac{1}{2} \int_{\mathbb{R}^N} |\nabla u|^2 + u^2 \, dx - \int_{\mathbb{R}^N} G(u) \, dx$$

since as $\alpha \to 0$, J_{α} approaches to J_0 with $G(u) = \frac{1}{2}F^2(u)$. A critical point of J_0 is a solution to the stationary nonlinear Schrödinger equation:

$$-\Delta u + u = G'(u). \tag{1.2}$$

The power type function $\frac{1}{p}|u|^p$ is a standard choice for nonlinearity G(u) (and also F(u)). By Sobolev inequality, it can be shown that the functional J_0 is a well-defined C^1 functional on $H^1(\mathbb{R}^N)$ if $G(u) = \frac{1}{n}|u|^p$ and $p \in [2, \frac{2N}{N-2}]$. It is a classical result that it admits a nontrivial critical point of ground state level in the subcritical range $p \in (2, \frac{2N}{N-2})$ [9,10]. Moreover, the standard application of Pohozaev's identity says that if p is out of subcritical, i.e., $1 or <math>p \ge 2N/(N-2)$, Eq. (1.2) does not admit any nontrivial finite energy solution. In case of J_{α} , Hardy-Littlewood-Sobolev inequality (Proposition 2.1 below) replaces Sobolev inequality to see that J_{α} with $F(u) = \frac{1}{p}|u|^p$ is well-defined and is continuously differentiable on $H^1(\mathbb{R}^N)$ if $p \in [\frac{N+\alpha}{N}, \frac{N+\alpha}{N-2}]$. Two numbers $\frac{N+\alpha}{N}$ and $\frac{N+\alpha}{N-2}$ play roles of lower and upper critical exponents for existence. It is proved by Moroz and Van schaftingen [11] that for every $\alpha \in (0, N)$, there exists a nontrivial ground state solution if p is in the subcritical range, i.e., $p \in (\frac{N+\alpha}{N}, \frac{N+\alpha}{N-2})$ and there is no nontrivial finite energy solution if p is outside of subcritical, i.e., $1 or <math>p \ge \frac{N+\alpha}{N-2}$. This result is compatible with the existence of the limit equation (1.2). Observe the existence range $p \in (\frac{N+\alpha}{N}, \frac{N+\alpha}{N-2})$ tends to $p \in (1, \frac{N}{N-2})$ and the nonlinear term $(I_{\alpha} * |u|^p)|u|^p$ tends to $|u|^{2p}$ as $\alpha \to 0$. We recall that Eq. (1.2) with $G(u) = \frac{1}{2}F^2(u) = \frac{1}{2p^2}|u|^{2p}$ admits a nontrivial finite energy solution if and only if $p \in (1, \frac{N}{N-2})$. Furthermore, we have H^1 convergence between ground states. For any $p \in (1, \frac{N}{N-2})$, choose a small $\alpha_0 > 0$ that p belongs to the segment $(\frac{N+\alpha}{N}, \frac{N+\alpha}{N-2})$ for every $\alpha \in (0, \alpha_0)$ so that a radial positive ground state u_{α} to (1.1) with $F(u) = \frac{1}{p}|u|^p$ exists. Then it is possible to show that as $\alpha \to 0$, u_α converges in H^1 sense to a ground state u_0 of the corresponding functional J_0 . See [12,13].

For general nonlinearity G, Berestycki and Lions prove in their celebrated paper [9] that (1.2) admits a ground state solution when G is $C^1(\mathbb{R})$ and satisfies the following:

(G1) there exists a constant C > 0 such that for every $s \in \mathbb{R}$,

$$|sG'(s)| \le C(|s|^2 + |s|^{\frac{2N}{N-2}}),$$

(G2)
$$\lim_{s \to \infty} \frac{G(s)}{\frac{2N}{|s|^{\frac{2N}{N-2}}}} = 0$$
 and $\lim_{s \to 0} \frac{G(s)}{|s|^2} = 0$,

(G3) there exists a constant $s_0 \in \mathbb{R} \setminus \{0\}$ such that $G(s_0) > \frac{s_0^2}{2}$.

In the same spirit, it is proved in [14] that there exists a ground state solution to (1.1) under the following conditions for the nonlinearity function $F \in C^1(\mathbb{R})$:

(F1) (growth) there exists a constant C > 0 such that for every $s \in \mathbb{R}$,

$$|sF'(s)| < C(|s|^{\frac{N+\alpha}{N}} + |s|^{\frac{N+\alpha}{N-2}}),$$

(F2) (subcriticality)
$$\lim_{s\to\infty}\frac{F(s)}{\frac{N+\alpha}{|s|}^{N+\alpha}}=0$$
 and $\lim_{s\to0}\frac{F(s)}{\frac{N+\alpha}{|s|}^{N+\alpha}}=0$,

(F3) (nontriviality) there exists a constant $s_0 \in \mathbb{R} \setminus \{0\}$ such that $F(s_0) \neq 0$.

Download English Version:

https://daneshyari.com/en/article/5471517

Download Persian Version:

https://daneshyari.com/article/5471517

Daneshyari.com