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a b s t r a c t

In this note we explain the use of the Akiake Information Criterion and its related
model comparison indices (usually derived for maximum likelihood estimator inverse
problem formulations) in the context of least squares (ordinary, weighted, iterative
weighted or “generalized”, etc.) based inverse problem formulations. The ideas are
illustrated with several examples of interest in biology.

© 2017 Published by Elsevier Ltd.

1. Introduction and overview of AIC

The Akaike Information Criterion (AIC) is one of the most widely used methods for choosing a “best
approximating” model from several competing models given a particular data set [1,2]. It was first developed
by Akaike in 1973 [3] and expanded upon in several subsequent papers [4–9]. The basis of the Akaike
Information Criterion relies on several assumptions. It is assumed that the given data or set of observations
is a realization of a random variable which has some unknown probability distribution; however, one can draw
inferences about the “true” distribution using the distribution of the data. Using this assumption, the best
approximating model would be the model in which the “distance” between the estimated distribution and
“true” distribution is as small as possible. Kullback–Leibler (K–L) information is a well-known measure of
the “distance” between two probability distribution models. Suppose Y is a random variable characterized
by a probability density function p(y|θ) where θ = (θ1, θ2, . . . , θk) is a k-dimensional parameter vector,
θ ∈ Rk, for the distribution. We assume there exists a true parameter θ0 such that p0 = p(·|θ0) is the true
probability density function of observations Y. Then the K–L information between the estimated model and
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“true” model is given by

I(p0, p(·, θ)) =
∫
Ωy

p0(y) ln
(

p0(y)
p(y|θ)

)
dy

=
∫
Ωy

p0(y) ln(p0(y)) dy −
∫
Ωy

p0(y) ln(p(y|θ)) dy
(1)

where Ωy is the set of all possible values for y. We know that I(p0, p(·, θ)) = 0 if and only if p0 = p(·|θ);
therefore, a good approximation model is one in which K–L information is small. However, the K–L
information quantity cannot be calculated directly as the true model p0 is generally unknown.

Yet, the maximum likelihood estimate θMLE(Y) is shown to be a natural estimator for θ0 [1,6,10]. In the
misspecified case (i.e., when there does not exist a “true” value θ0 for θ such that p(·|θ) ≡ p0), the asymptotic
normality property of the maximum likelihood estimator gives that θMLE(Y) is normally distributed with

E(θMLE(Y)) = arg min
θ∈Ωθ

I(p0, p(·|θ)).

Furthermore, EY(I(p0, p(·|θMLE(Y))) > I(p0, p(·|θ))) [2]; therefore, EY(I(p0, p(·|θMLE(Y)))) can be used
to estimate the “distance” between p and p0. Thus the best approximating model would be the one that
solves

min
p∈P

EY(I(p0, p(·|θMLE(Y))))

where P is a set of candidate models. Following the derivation in [2], we can write

EY(I(p0, p(·|θMLE(Y)))) =
∫
Ωy

p0(x) ln(p0(x)) dx − EY

(∫
Ωy

p0(x) ln(p(x|θMLE(y))) dx
)

=
∫
Ωy

p0(x) ln(p0(x)) dx − EYEX (ln(p(X|θMLE(Y)))) .

Therefore,

min
p∈P

EY(I(p0, p(·|θMLE(Y)))) = max
p∈P

EYEX (ln(p(X|θMLE(Y)))) .

Furthermore, for a large sample and “good” model, it can be shown (see [2] for details) that

max
p∈P

EYEX (ln(p(X|θMLE(Y)))) ≈ ln
(

L(θ̂MLE |y)
)

− κθ

where L(θ̂MLE |y) = p(y|θ̂MLE) represents the likelihood of θ̂MLE given sample outcomes y and κθ is
the total number of estimated parameters. For historical reasons, Akaike multiplied by −2 yielding the
well-known Akaike information criterion (AIC):

AIC = −2 ln
(

L(θ̂MLE |y)
)

+ 2κθ. (2)

Note that the complexity of the model, as given by the total number of parameters in the model, is considered
in the AIC. Given the same level of accuracy, the simpler model is preferable to the more complex one.

In this paper, we focus on models which are n-dimensional vector dynamical systems or mathematical
models of the form

dx
dt

(t) = g(t, x(t), q),
x(t0) = x0
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