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a b s t r a c t

We are concerned with the uniqueness of solutions for the following nonlinear
fractional boundary value problem:{

Dpx(t) + f(t, x(t)) = 0, 2 < p ≤ 3, t ∈ (0, 1),
x(0) = x′(0) = 0, x(1) = 0

where Dp
0+ denotes the standard Riemann–Liouville fractional derivative. Our

analysis relies on the theory of linear operators and the ∥ · ∥e norm.
© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The boundary value problems for fractional differential equations arise from the studies of models
of aerodynamics, fluid flows, electrodynamics of complex medium, electrical networks, rheology, polymer
rheology, economics, biology chemical physics, control theory, signal and image processing. Recently, the
study of such kind of problems has received considerable attention both in theory and applications, see
[1–13] and the references therein. In particular, existence, uniqueness and qualitative analysis of solutions
of boundary value problems for fractional differential equations have been considered by many authors, see
[14–19]. For example, cui [14] considered the following boundary value problems for fractional differential
equations {

Dpx(t) + p(t)f(t, x(t)) + q(t) = 0, t ∈ (0, 1),
x(0) = x′(0) = 0, x(1) = 0

where Dp
0+ is the standard Riemann–Liouville derivative, 2 < p ≤ 3 is a real number, q : (0, 1) → [0, +∞)

is Lebesgue integrable and does not vanish identically on any subinterval of (0, 1). By use of u0-positive
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operator, he obtained the uniqueness existence of solutions for the above fractional differential equation
under the assumption that f(t, x) is a Lipschitz continuous function. It should be mentioned that the
Lipschitz constant is related to the first eigenvalues corresponding to the relevant operators, and therefore
the Lipschitz condition is optimal. However, it is very difficult to compute the value of the first eigenvalues
even for boundary value problems for integer differential equation.

In this paper, we devote to the investigation of the uniqueness of solutions of fractional differential
equations {

Dpx(t) + f(t, x(t)) = 0, t ∈ (0, 1),
x(0) = x′(0) = 0, x(1) = 0,

(1.1)

where 2 < p ≤ 3 is a real number. Namely, we prove that a general theorem on the uniqueness of solutions
to (1.1) under a mild Lipschitz condition on f (see Theorem 3.1) by use of e-norm. We should address here
that our work presented in this paper has various new features. First of all, the Lipschitz condition is easy
to verify. Second, our study is on singular nonlinear differential boundary value problems, that is, f(t, x)
may be singular at t = 0, 1.

The rest of this paper is organized as follows. In Section 2, we recall some basic definitions of fractional
calculus and give some useful preliminary results. In Section 3, we show the uniqueness of solutions to (1.1).

2. Preliminaries

In this section, we introduce notions, definitions, and preliminary results which are used throughout this
paper. By C[0, 1], we denote the Banach space of all continuous functions from [0, 1] to R with the norm

∥x∥ = max
t∈[0,1]

|x(t)|.

Definition 2.1 ([1]). The Riemann–Liouville fractional derivative of order p > 0 of a continuous function
f : (0, ∞) → R is given by

Dpf(t) = 1
Γ (n − p)

(
d

dt

)n ∫ t

0

f(s)
(t − s)p−n+1 ds,

where n − 1 ≤ α < n, provided that the right-hand side is pointwise defined on (0, ∞).

Lemma 2.1 ([10]). Let σ ∈ C(0, 1) ∩ L(0, 1) and 2 < p ≤ 3, then the unique solution of{
Dpx(t) + σ(t) = 0, t ∈ (0, 1),
x(0) = x′(0) = 0, x(1) = 0,

is given by

x(t) =
∫ 1

0
G(t, s)σ(s)ds,

where G(t, s) is Green’s function given by

G(t, s) =

⎧⎪⎪⎨⎪⎪⎩
(1 − s)p−1tp−1 − (t − s)p−1

Γ (p) , 0 ≤ s ≤ t ≤ 1,

(1 − s)p−1tp−1

Γ (p) , 0 ≤ t ≤ s ≤ 1.
(2.1)

Lemma 2.2 ([10]). The function G(t, s) defined by (2.1) satisfies the following conditions:
(1) tp−1(1 − t)s(1 − s)p−1 ≤ Γ (p)G(t, s) ≤ (p − 1)s(1 − s)p−1, t, s ∈ (0, 1),
(2) tp−1(1 − t)s(1 − s)p−1 ≤ Γ (p)G(t, s) ≤ (p − 1)tp−1(1 − t), t, s ∈ (0, 1).
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