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a b s t r a c t

This short note is about the gauge condition for the velocity potential, the definitions
of the Bernoulli constant and of the velocity speeds in the context of water waves.
These definitions are often implicit and thus the source of confusion in the literature.
This note aims at addressing this issue. The discussion is related to water waves
because the confusion are frequent in this field, but it is relevant for more general
problems in fluid mechanics.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The Euler equations describe the momentum conservation of an inviscid fluid. For irrotational motions of
incompressible fluids, the Euler equations can be integrated into a scalar equation called Bernoulli equation
for steady flows and Cauchy–Lagrange equation for unsteady flows. The Bernoulli and Cauchy–Lagrange
equations resulting of an integration procedure, they involve an arbitrary integration ‘constant’, the so-called
Bernoulli constant (that is actually an arbitrary function of time for the Cauchy–Lagrange equation). This
Bernoulli ‘constant’ and its physical meaning is a frequent source of confusion in the literature, especially
in the study of water waves. Thus, there has been some recent works aiming at clarifying the situation [1].

The purpose of this short note is to address the issues related to the Bernoulli constants. This leads to
clarify the definition of the velocity potential, its uniqueness being introduced by a gauge condition, and
how this quantity is modified via Galilean transformations. Various frames of references are also discussed
as they lead to the definition the phase velocity of a wave.

2. Cauchy–Lagrange equation

For the sake of simplicity, we consider the two-dimensional motion of an homogeneous incompressible
fluid, but this is not a limitation for the purpose of the present note. For inviscid fluids, the equations of
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motion are [2]

ux + uy = 0, (1)
ut + u ux + v uy = − px, (2)
vt + u vx + v vy = − py − g, (3)

where x = (x, y) are the Cartesian coordinates (y being directed upward), t is the time, u = (u, v) is the
velocity field, p is the pressure divided by the (constant) density and g is the (constant) acceleration due to
gravity directed toward the decreasing y-direction (downward).

In irrotational motion vx = uy, so there exists a velocity potential ϕ such that u = ϕx and v = ϕy,
i.e. u = grad ϕ. The Euler equations (2)–(3) can then be rewritten [2]

grad
[

ϕt + 1
2 (ϕx)2 + 1

2 (ϕy)2 + g y + p

]
= 0, (4)

that can be integrated into the Cauchy–Lagrange equation

ϕt + 1
2 (ϕx)2 + 1

2 (ϕy)2 + g y + p = C(t), (5)

where C is an integration ‘constant’ often called Bernoulli constant or Bernoulli integral.

3. Gauge condition

The velocity potential being defined via its gradient, ϕ is not an unique function: adding any arbitrary
function of time to ϕ does not change the velocity field. Thus, if one makes the change of potential [2]

ϕ(x, t) = ϕ⋆(x, t) +
∫

C(t) dt,

so that grad ϕ = grad ϕ⋆, the Cauchy–Lagrange equation (5) becomes

ϕ⋆
t + 1

2 (ϕ⋆
x)2 + 1

2 (ϕ⋆
y)2 + g y + p = 0. (6)

In other words, this shows that it is always possible, via a suitable definition of the velocity potential, to
take

C(t) = 0, (7)

without loss of generality and preserving the velocity field (i.e., grad ϕ = u). Enforcing the unicity of the
velocity potential ϕ (up to an additional constant) via (7) is a so-called gauge condition.

Hereafter, we always take the gauge condition (7) and the Cauchy–Lagrange equation is thus

ϕt + 1
2 (ϕx)2 + 1

2 (ϕy)2 + g y + p = 0. (8)

Of course, other gauge conditions could be introduced, as well as no gauge condition at all. In the latter
case, the arbitrary function C(t) should be carried along all the derivations.

Note that with the gauge (7), the Bernoulli ‘constant’ disappears from the Cauchy–Lagrange equation
(8), but it has not completely been eliminated: it is now ‘hidden’ in the definition of the velocity potential
ϕ and will reappear explicitly for some special flows, as shown below.
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