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Abstract

We discuss a class of quasi-linear pseudo-parabolic equation with nonlocal source

ut −∆ut −∇ ·
(
|∇u|2q∇u

)
= up(x, t)

∫

Ω

k(x, y)up+1(y, t)dy x, y ∈ Ω, t ∈ (0, T0],

where q ≤ p and 0 < q < n−2
2 . By establishing the criterions for blow-up, we determine the upper bounds

for blow-up time under not only q < p and non-positive initial energy but also q = p and negative initial

energy. The results shown that the upper bound for blow-up time under q < p is different from it under

q = p. Moreover, we also determine the lower bound for blow-up time.
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1. Introductions

The aim of this paper is to investigate the bounds for blow-up time on the Cauchy problem

ut −∆ut −∇ ·
(
|∇u|2q∇u

)
= up(x, t)

∫

Ω

k(x, y)up+1(y, t)dy, x, y ∈ Ω, t ∈ (0, T0), (1.1)

u = 0, x ∈ ∂Ω, t ∈ (0, T0), (1.2)

u(x, 0) = u0 ≥ 0, x ∈ Ω. (1.3)

where Ω is a bounded domain with sufficiently smooth boundary ∂Ω in Rn (n ≥ 3), 0 < q < n−2
2 , q ≤ p ≤ 2

n−2 ,5

T0 is the bow-up time if blow-up does occur, or else T0 = ∞ and k(x, y) is an integrable and real valued

function which satisfies

k(x, y) = k(y, x),

∫

Ω

∫

Ω

k2(x, y)dxdy < +∞,
∫

Ω

∫

Ω

k(x, y)up+1(x, t)up+1(y, t)dxdy > 0.
(1.4)

The pseudo-parabolic equations describes a variety of important physical and biological phenomena, for

example, the aggregation of population [6], the unidirectional propagation of nonlinear dispersive long waves

[7].10
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