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a b s t r a c t

This note proposes, analyzes, and studies numerically a regularization approach
in the computation of the initial condition for reduced-order models (ROMs)
of convection–diffusion equations. The aim of this approach consists in reducing
significantly spurious oscillations in the ROM solutions.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Convection–diffusion equations are part of many models for natural phenomena and industrial processes.
They model the behavior of, e.g., temperature (energy balance) or concentrations. Often, convection
dominates diffusion. In this situation, it is well known that so-called stabilized discretizations have to be
employed to perform stable numerical simulations [1]. From the practical point of view, not only the accuracy
of a discretization, measured in some norm, is of interest but also that the numerical solution possesses
admissible values. For instance, a computed concentration with strong negative spurious oscillations is
useless in practice. However, there are relatively few discretizations that lead to solutions without spurious
oscillations, like the FEM-FCT schemes [2,3].

ROM is usually applied if simulations with nearly the same setup have to be repeated over and over
again and if the efficiency is of more importance than the accuracy, like in the simulation of optimization
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problems. Based on a set of snapshots and the proper orthogonal decomposition (POD) approach [4], one
may compute a basis that already captures important features of the solution.

Standard ROM simulations of convection–diffusion equations suffer from strong spurious oscillations. The
reasons for them are twofold: the construction of the ROM’s initial condition and the used discretization.
This note addresses the first issue. In addition to using the standard definition by an L2 projection, a
regularization is applied. To the best of the authors’ knowledge, this approach has not been proposed in
the literature so far. It will be analyzed briefly and numerical studies show that spurious oscillations are
damped significantly.

2. Reduced-order models for convection–diffusion equations

Consider the convection–diffusion–reaction equation

∂tu − ε∆u + b · ∇u + cu = f in (0, T ] × Ω (1)

with homogeneous Dirichlet boundary conditions u = 0 and the initial condition u0(x). In (1), Ω is a
bounded domain in Rd, d ∈ {2, 3}, with boundary Γ , b(t, x) and c(t, x) denote convection and reaction
fields, respectively, ε > 0 is a constant diffusion coefficient, and T is the length of the time interval.

Let X = H1
0 (Ω). To compute the POD basis functions, the centered-trajectory method is utilized,

i.e., the POD modes are computed from the fluctuation of the snapshots ui − ūh, i = 1, . . . , M , where
ūh is the average of the snapshots. For a detailed description of performing the POD and computing the
POD modes, it is referred to [5]. Let the ROM approximation uro of the solution u be given by u(t, x) ≈
uro(t, x) = ūh(x) + ur(t, x), where ur(t, x) =

∑r
i=1αi(t)φro,i(x) with the unknown coefficients {αi}r

i=1
and the POD basis functions {φro,i}r

i=1. The standard Galerkin reduced-order model (G-ROM) is built by
projecting the continuous problem into the finite-dimensional POD space Xr = span{φro,i, i = 1, . . . , r}.
Numerical investigations in [6] asserted that the stabilization of a ROM was necessary in order to obtain
stable simulations for arbitrary POD dimensions r in the convection-dominated regime. The stabilized
Streamline-Upwind Petrov–Galerkin reduced-order model (SUPG-ROM) was used, which is presented in
the following.

Let the superscript n of a function denote the evaluation of the function at the time instance tn and let
∆t denote the fixed time step. The SUPG-ROM combined with the backward Euler method reads as follows:
For n = 1, 2, . . . find un

r = un
ro − ūh ∈ Xr such that ∀vr ∈ Xr(

un
r − un−1

r , vr

)
+ ∆taSUPG,r (un

r , vr) = ∆t (fn, vr) − ∆t aSUPG,r (ūh, vr)
+∆t

∑
K∈Th

δr,K(fn, bn · ∇vr)K −
∑

K∈Th

δr,K

(
un

r − un−1
r , bn · ∇vr

)
K

, (2)

where δr,K is a stabilization parameter to be chosen and

aSUPG,r(ur, vr) = (ε∇ur, ∇vr) + (bn · ∇ur, vr) + (cnur, vr)
+

∑
K∈Th

δr,K(−ε∆ur + bn · ∇ur + cnur, bn · ∇vr)K

for all ur, vr ∈ Xr ⊂ Xh. Setting δr,K = 0 in (2) recovers the Galerkin ROM. In [6], numerical analysis
was utilized to derive the appropriate scalings of the stabilization parameter δr,K for the case of a family
of uniform triangulations. In this study, the finite element version of the SUPG stabilization parameter
δr = O(h), with h being the finite element mesh width, was recommended and therefore this choice will be
employed in the numerical simulations in Section 4.
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