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a b s t r a c t

We are concerned with the numerical approximation of the basic reproduction
number R0, which is the well-known epidemiological threshold value defined by
the spectral radius of the next generation operator. For a class of age-structured
epidemic models in infinite-dimensional spaces, R0 has the abstract form and cannot
be explicitly calculated in general. We discretize the linearized equation for the
infective population into a system of ordinary differential equations in a finite n-
dimensional space and obtain a corresponding threshold value R0,n, which can be
explicitly calculated as the positive dominant eigenvalue of the next generation
matrix. Under the compactness of the next generation operator, we show that
R0,n → R0 as n → +∞ in terms of the spectral approximation theory.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In the field of mathematical epidemiology, the age-structure of population has been regarded important
since most infectious diseases such as childhood diseases and sexually transmitted diseases have age-
dependent characteristics. Age-structured SIR epidemic models, in which the population is divided into
three subpopulations called susceptible, infective and recovered, are one of the most basic epidemic models
and have attracted much attention of researchers for decades [1–8]. In [3], Greenhalgh conjectured that the
spectral radius of a certain linear integral operator would play the role of a threshold value for the existence
and stability of each equilibrium in an age-structured SIR epidemic model. In [5], Inaba proved his conjecture:
if the threshold value is less than one, then the disease-free equilibrium is globally asymptotically stable and
there exists no endemic equilibrium, whereas if it is greater than one, then the disease-free equilibrium is
unstable and the endemic equilibrium uniquely exists and it is locally asymptotically stable under some
additional conditions. The threshold value is nowadays called the basic reproduction number R0, and its
epidemiological meaning is the expected value of secondary cases produced by a typical infective individual
during its entire infectious period in a fully susceptible population [9].
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R0 is not only mathematically but also epidemiologically important for assessing the disease burden of
infectious diseases. However, for age-structured epidemic models in infinite-dimensional spaces, R0 cannot
be explicitly calculated in general since it has the abstract form as the spectral radius of the linear integral
operator called the next generation operator. If we discretize the model into a finite dimensional space, then
the corresponding threshold value can be explicitly calculated as the positive dominant eigenvalue of the
nonnegative irreducible matrix called the next generation matrix. We can expect that the corresponding
threshold value converges to R0 as the step size of the discretization decreases. However, the convergence
of the eigenvalues with preservation of the algebraic multiplicity is not trivial and we need the spectral
approximation theory [10] to show it mathematically rigorously. In this study, in terms of the spectral
approximation theory, we show that the corresponding threshold value R0,n in the n-dimensional space
converges to R0 as n → +∞, provided the next generation operator is compact. The compactness holds
under relatively weak conditions. By using the demographic data in Japan, we give a numerical example
to illustrate the theoretical result. For other studies of age-structured epidemic models from the numerical
viewpoints, see [11–14]. Although these studies focused on the convergence of numerical solutions, our focus
in this paper is on the convergence of the spectral approximation for the computation of R0. For another
study of the spectral approximation for age-structured population models, see [15]. For another study of the
approximation of R0 for epidemic models in time periodic environment, see [16].

2. Main result

We consider the following equation for the infective population, which is linearized around the disease-free
steady state.⎧⎨⎩

(
∂

∂t
+ ∂

∂a

)
I(t, a) = S0(a)

∫ a†

0
β(a, σ)I(t, σ)dσ − (µ(a) + γ(a))I(t, a), t > 0, a ∈ (0, a†),

I(t, 0) = 0, t > 0, I(0, a) = I0(a), a ∈ (0, a†),
(2.1)

where I(t, a) denotes the infective population of age a at time t, S0(a) denotes the susceptible population
of age a in the disease-free steady state, a† > 0 denotes the maximum age, β(a, σ) denotes the disease-
transmission coefficient, µ(a) denotes the force of mortality, γ(a) denotes the recovery rate and I0(a) denotes
the initial age distribution of the infective population. Note that the vertical transmission is excluded since
I(t, 0) = 0 for all t > 0. We assume that S0, β, µ and γ are continuous, strictly positive and uniformly
bounded on [0, a†]. We define the following two linear operators on X := L1(0, a†).⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Aφ(a) := − d

da
φ(a) − (µ(a) + γ(a))φ(a), D(A) :=

{
φ ∈ X : φ is absolutely continuous on [0, a†],
d

da
φ ∈ X and φ(0) = 0

}
,

Fφ(a) := S0(a)
∫ a†

0
β(a, σ)φ(σ)dσ.

Using A and F , we can rewrite (2.1) into the following abstract Cauchy problem in X.

d

dt
I(t) = AI(t) + FI(t), I(0) = I0 ∈ D(A). (2.2)

It is easy to see that the positive inverse (−A)−1 is defined as (−A)−1φ :=
∫ a

0 e
−

∫ a

σ
(µ(η)+γ(η))dη

φ(σ)dσ, φ ∈
X and the next generation operator K is defined as follows (see, for instance, [5]).

Kφ(a) := F (−A)−1φ(a) = S0(a)
∫ a†

0
β(a, σ)

∫ σ

0
e

−
∫ σ

ρ
(µ(η)+γ(η))dη

φ(ρ)dρ dσ, φ ∈ X.
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